

大容量 DC 電子負荷装置

	LSP シリーズ	
LSP602-151	LSP602-601	LSP602-122
LSP802-151	LSP802-601	LSP802-122
LSP103-151	LSP103-601	LSP103-122
LSP123-151	LSP123-601	LSP123-122
LSP153-151	LSP153-601	LSP153-122
LSP183-151	LSP183-601	LSP183-122
LSP203-151	LSP203-601	LSP203-122
LSP243-151	LSP243-601	LSP243-122

B71-0511-01

保 証 について

このたびは、当社計測器をお買い上げいただきまして誠にありがとうございます。

ご使用に際し、本器の性能を十分に発揮していただくために、本取扱説明書(以下本説明書と記 します)を最後までよくお読みいただき、正しい使い方により、末永くご愛用くださいますようお願い 申し上げます。本説明書は、大切に保管してください。

お買い上げの明細書(納品書、領収書等)は保証書の代わりとなりますので、大切に保管してく ださい。

アフターサービスに関しまして、また、商品についてご不明な点がございましたら、当社・サービス センターまでお問い合わせください。

日本国内で販売された製品が海外に持出されて故障が生じた場合、基本的には日本国内での 修理対応となります。

保証期間内であっても、当社までの輸送費はご負担いただきます。

本説明書中に介マークが記載された項目があります。この介マークは本器を使用されるお客様の安全と本器を破壊と損傷から保護するために大切な注意項目です。よくお読みになり正しくご 使用ください。

■ 商標・登録商標について

TEXIO は当社の産業用電子機器における製品ブランドです。また、本説明書に記載されている会社名および商品名は、それぞれの国と地域における各社および各団体の商標または登録商標です。

■ 取扱説明書について

本説明書の内容の一部または全部を転載する場合は、著作権者の許諾を必要とします。 また、製品の仕様および本説明書の内容は改善のため予告無く変更することがありますので あらかじめご了承ください。

取扱説明書類の最新版は当社 HP (https://www.texio.co.jp/download/)に掲載されています。

当社では環境への配慮と廃棄物の削減を目的として、製品に添付している紙または CD の取 説類の廃止を順次進めております。

取扱説明書に付属の記述があっても添付されていない場合があります。

■ 輸出について

本器は、日本国内専用モデルです。本製品を国外に持ち出す場合または輸出する場合には、 事前に当社・各営業所または当社代理店(取扱店)にご相談ください。

■ ファームウェアバージョンについて

本書に記載の内容は LSP シリーズ本体のファームウエアのバージョンが 1.00 以上に対応し ます。

保証について	
製品を安全にご使用いただくために1	Ш-1
第1章. はじめに	1
1-1. LSP シリーズの紹介	2
1-1-1. 主な特長	2
1-1-2. 保護機能	2
1-2. アクセサリー	4
1-3. 動作モードの説明	5
1-3-1. CC モード	5
1-3-2. CR モード	5
1-3-3. CV モード	5
1-3-4. CP モード	6
1-3-5. スルーレート	6
1-3-6. ダイナミック波形の定義	8
1-4. 動作範囲	9
1-5. 外観	16
1-5-1. 前面パネル	16
1-5-2. LCD ディスプレイ	17
第2章. 機能の説明	23
2-1. FUNCTION キーの説明	23
2-2. Test キーの説明	35
2-3. System キーの説明	47
2-4. ENTRY キーの説明	54
第3章. 接続	55
3-1. 背面パネル	55
3-2. I-monitor の接続	58
3-3. マスター・スレーブの説明	59
第4章. 設置	62
4-1. 電源ラインのチェック	62
4-2. 接地要件	62
4-3. 電源の投入	62
4-4. 負荷入力端子への接続	63
4-5. RS-232C インタフェースオプション	63
4-6. GP-IB インタフェースオプション	63

4-7. USB インタフェースオプション	64
4-8. LAN インタフェースオプション	64
4-9. I/O 接続	64
4-10. 負荷電流のスルーレート設定	65
4-11. 負荷線のインダクタンス	67
第5章. リモートコントロール	70
5-1. インタフェース構成	70
5-1-1. RS-232C の構成	70
5-1-2. GP-IB の構成	71
5-1-3. USB の構成	71
5-1-4. LAN の構成	71
5-2. 通信インタフェースのプログラミングコマンドリスト	72
5-2-1. コマンドー覧	72
5-3. コマンドの構文	76
5-3-1. 略語の説明	76
5-3-2. 通信インタフェースプログラミングコマンド	76
5-4. コマンドリスト	77
5-4-1. プリセットコマンド	77
5-4-2. リミットコマンド	
5-4-3. ステータスコマンド	87
5-4-4. システムコマンド	91
5-4-5. 計測コマンド	92
第6章. アプリケーション	94
6-1. ローカルセンス接続	94
6-2. リモートセンス接続	95
6-3. 定電流モードアプリケーション	96
6-4. 定電圧モードアプリケーション	
6-5. 定抵抗モードアプリケーション	
6-6. 定電力モードアプリケーション	
6-7. CC+CV モードの動作アプリケーション	
6-8. CP+CV モードの動作アプリケーション	
6-9. 定電流源としての動作	
6-10. ゼロボルト負荷アプリケーション	
6-11. 並列動作	
6-12. 電源の OCP テスト	
6-13. 電源の OPP テスト	
6-14. SHORT テスト	
6-14-1. OCP、OPP、SHORT の動作フローチャート	
6-15. バッテリー放電テスト	

6-15-1. Disch CC / Disch CP 放電容量の測定	
6-15-2. サイクルライフテスト	
6-15-3. RAMP モード	
6-15-4. REMOTE コマンドの説明	
	117
	117
7.1.201のナジョル1 設定	
7-2. LOI VY J /	
7-2-1. LOF 002-XXX	
7-2-3 SP153-xxx SP183-xxx	
7-2-4 SP203-xxx SP243-xxx	129
7-3 ISP シリーズの什様	130
7-3-1 SP602-151 SP802-151	130
7-3-2. LSP103-151. LSP123-151	
7-3-3. LSP153-151, LSP183-151	
7-3-4. LSP203-151, LSP243-151	
7-3-5. LSP602-601, LSP802-601	
7-3-6. LSP103-601, LSP123-601	140
7-3-7. LSP153-601, LSP183-601	142
7-3-8. LSP203-601, LSP243-601	
7-3-9. LSP602-122, LSP802-122	146
7-3-10. LSP103-122, LSP123-122	148
7-3-11. LSP153-122, LSP183-122	150
7-3-12. LSP203-122, LSP243-122	
7-3-13. 共通仕様	
7-4. USB の設定	
7-5. LAN の設定	155
7-6. オートシーケンス機能	
7-6-1. オートシーケンス	

■ はじめに

製品を安全にご使用いただくため、ご使用前に本説明書を最後までお読みください。製品の 正しい使い方をご理解のうえ、ご使用ください。

本説明書をご覧になっても、使い方がよくわからない場合は、取扱説明書の末ページに記載された、当社・サービスセンターまでお問合せください。

本説明書をお読みになった後は、いつでも必要なときご覧になれるように、保管しておいてください。

■ 絵表示について

本説明書および製品には、製品を安全に使用するうえで必要な警告、および注意事項を示す、 下記の絵表示が表示されています。

く絵表示>	
	製品および本説明書にこの絵表示が表示されている箇所が ある場合は、その部分で誤った使い方をすると使用者の身体、 および製品に重大な危険を生ずる可能性があることをあらわし ます。この絵表示部分を使用する際は、必ず、本説明書を 参照する必要があります。
▲ 警告	この表示を無視して、誤った使い方をすると、使用者が死亡 または重傷を負う可能性があり、その危険を避けるための警告 事項が記載されていることをあらわします。
1 注意	この表示を無視して、誤った使い方をすると、使用者が軽度の 傷害を負うか、または製品に損害を生ずる恐れがあり、その 危険を避けるための注意事項が記載されていることをあらわし ます。

お客様または第三者が、この製品の誤使用、使用中に生じた故障、その他の不具合、または、この製品の使用によって受けられた損害については、法令上の賠償責任が認められる場合を除き、 当社は一切その責任を負いませんので、あらかじめご了承ください。

■ 製品のケースおよびパネルは外さないでください

製品のケースおよびパネルは、いかなる目的があっても、使用者は絶対に外さないでください。 使用者の感電事故、および火災を発生する危険があります。

■ 製品を使用する際のご注意

下記に示す使用上の注意事項は、使用者の身体・生命に対する危険、および製品の損傷・劣 化などを避けるためのものです。必ず下記の警告・注意事項を守ってご使用ください。

■ 電源に関する警告事項

● 電源電圧について

製品の定格電源電圧は、AC100Vから AC230V または AC240Vです。

製品個々の定格電圧は製品背面と本説明書「定格」欄の表示をご確認ください。

日本国内向けおよび AC125V までの商用電源電圧地域向けモデルに付属された電源コードは定格 AC125V仕様のため、AC125Vを超えた電源電圧で使用される場合は電源コードの変更が必要になります。電源コードを AC250V 仕様のものに変更しないで使用された場合、感電・火災の危険が生じます。

製品が電源電圧切換え方式の場合、電源電圧の切換え方法は、製品個々に付属している 取扱説明書の電圧切換えの章をご覧ください。

● 電源コードについて

(重要) 同梱、もしくは製品に取り付けられている電源コードは本製品以外に使用 できません。

付属の電源コードが損傷した場合は、使用を中止し、当社・サービスセンターまでご連絡く ださい。電源コードが損傷したままご使用になると、感電・火災の原因となることがありま す。

● 保護用ヒューズについて

入力保護用ヒューズが溶断した場合、製品は動作しません。 外部にヒューズホルダが配置されている製品は、ヒューズを交換することができます。交換方法は、本説明書のヒューズ交換の章をご覧ください。 交換手段のない場合は、使用者は、ヒューズを交換することができません。

ヒューズが切れた場合は、ケースを開けず、当社・サービスセンターまでご連絡ください、 当社でヒューズ交換をいたします。

使用者が間違えてヒューズを交換された場合、火災を生じる危険があります。

● 電源の投入・遮断について 製品の損傷を避けるために、負荷入力端子に電圧を印可した状態で、電源スイッチのオンおよびオフ操作はしないでください。

■ 接地に関する警告事項

製品の前面パネルまたは、背面パネルに GND 端子がある場合は、安全に使用するため、必ず 接地してからご使用ください。

■ 設置環境に関する警告事項

● 動作温度・湿度について 製品は、「定格」欄に示されている動作温度の範囲内でご使用ください。製品の通風孔を ふさいだ状態や、周辺の温度が高い状態で使用すると、火災の危険があります。 製品は、「定格」欄に示されている動作湿度の範囲内でご使用ください。湿度差のある部 屋への移動時など、急激な湿度変化による結露にご注意ください。また、濡れた手で製品 を操作しないでください。感電および火災の危険があります。

● ガス中での使用について 可燃性ガス、爆発性ガスまたは蒸気が発生あるいは貯蔵されている場所、およびその周辺での使用は、爆発および火災の危険があります。このような環境下では、製品を動作させないでください。

また、腐食性ガスが発生または充満している場所、およびその周辺で使用すると製品に重 大な損傷を与えますので、このような環境でのご使用はお止めください。

● 設置場所について 傾いた場所や振動がある場所に置かないでください。落ちたり、倒れたりして破損や怪我 の原因になります。

■ 異物を入れないこと

通風孔から製品内部に金属類や燃えやすい物などを差し込んだり、水をこぼしたりしないでください。

■ 使用中の異常に関する警告事項

製品を使用中に、製品より「発煙」、「発火」、「異臭」、「異音」などの異常を生じた場合は、ただち に使用を中止してください。電源スイッチを切り、電源コードのプラグをコンセントから抜くなどし て、電源供給を遮断した後、当社・サービスセンターまで、ご連絡ください。

■ 入出力端子について

入力端子には、製品を破損しないために最大入力の仕様が決められています。 本説明書の「定格」欄に記載された仕様を超えた入力は供給しないでください。 また、出力端子へは外部より電力を供給しないでください。製品故障の原因になります。

■ 校正について

製品は工場出荷時、厳正な品質管理のもと性能・仕様の確認を実施していますが、部品などの経年変化などにより、その性能・仕様に多少の変化が生じることがあります。製品の性能・ 仕様を安定した状態でお使いいただくため、定期的な校正をお勧めいたします。 製品校正についてのご相談は、当社・サービスセンターへご連絡ください。

■ 日常のお手入れについて

製品のケース、パネル、つまみなどの汚れを清掃する際は、シンナーやベンジンなどの溶剤 は避けてください。

塗装がはがれ、樹脂面が侵されることがあります。

ケース、パネル、つまみなどを拭くときは、中性洗剤を含ませた柔らかい布で軽く拭き取ってく ださい。

また、清掃のときは製品の中に水、洗剤、その他の異物などが入らないようご注意ください。 製品の中に液体、金属などが入ると、感電および火災の原因となります。

清掃のときは電源コードのプラグをコンセントから抜くなどして、電源供給を遮断してからおこ なってください。

以上の警告事項および注意事項を守り、正しく安全にご使用ください。

また、本説明書には個々の項目でも、注意事項が記載されていますので、使用時にはそれら の注意事項を守り正しくご使用ください。

本説明書の内容でご不明な点、またはお気付きの点がありましたら、当社・サービスセンターまで ご連絡いただきますよう、併せてお願いいたします。 LSP シリーズ電子負荷装置は、DC 電源とバッテリーのテスト、評価、およびバーンイン 用に設計されています。

LSP シリーズ電子負荷装置は、前面パネルでローカルに制御することも、

GP-IB/RS-232C/USB/LAN を介してコンピュータでリモート制御することもできます。 放電モードは、定電流(CC)モード、定抵抗(CR)モード、定電圧(CV)モード、および定 電力(CP)モードがあります。定電流モードでは、独立した立ち上がりおよび立ち下がり 電流スルーレートを備えた広範囲のダイナミック負荷と、任意の波形入力を備えたアナ ログプログラミング入力を利用できます。

1-1. LSP シリーズの紹介

1-1-1. 主な特長

特長

•CC、CR、CV、CP	、ダイナミック、およびショ	ョート動作モード。
--------------	---------------	-----------

- ・コンピュータインタフェースの選択によるリモートコントロール。
- ・16ビットの電圧計および電流計による高精度と解像度。
- ・ダイナミック負荷用の内蔵パルスジェネレータ。
- ・独立して調整可能な電流の立ち上がり時間と立ち下がり時間。
- ・ショートテストによる電流測定。
- ・専用の過電流および過電力保護テスト機能。
- ・プログラム可能な電圧検出機能。
- ・過電力、過熱、過電圧及び過電流に対する保護機能。
- ・外部信号によるアナログプログラミング入力。
- ・BNC(非絶縁)ソケットを備えた電流モニター。
- ・デジタルキャリブレーション。
- ・高度なファン速度制御。
- ・150 個の本体メモリ保存/呼び出し。
- ・本体でテストルーチンを設定できる自動シーケンス機能。

1-1-2. 保護機能

LSP シリーズ電子負荷装置の保護機能は次のとおりです。

過電圧保護 (OVP)	過電圧回路が作動すると、電子負荷がオフになります。メッセージ OVP が LCD に表示されます。OVP 障害が取り除かれると、負荷 は再び電力をシンクするように設定できます。ユニットは OVP 状態 が与えられた場合に自身を保護しようとしますが、外部保護と正しく 定格された電子負荷を使用して、潜在的な OVP 障害状態から保 護することを強くお勧めします。 過電圧保護回路は所定の電圧に設定されており、調整することは できません。OVP レベルは、LSP シリーズの公称電圧定格の 105%です。
注意 🏠	LSP シリーズの入力には絶対に AC 電圧を印加しないでください。 LSP シリーズの定格負荷よりも高い DC 電圧を印加しないでください。このアドバイスを無視すると、電子ロードモジュールが損傷する 可能性があります。この損傷は保証の対象外です。
過雷流保護	ISP シリーズは雷流値を監視します。雷流が定格雷流入力の

(OCP)

LSP シリースは電流値を監視します。電流が定格電流人力の 104%を超えると、負荷への入力は自動的に LOAD OFF に切り替 わります。過電流状態が発生すると、ディスプレイに OCP が表示さ れます。

- 過電力保護 LSP シリーズは消費電力値を監視します。消費電力が定格電力入
 (OPP) カの 105%を超えると、負荷への入力は自動的に LOAD OFF に 切り替わります。過電力状態が発生すると、ディスプレイに OPP が 表示されます。
- 過熱保護
 ヒートシンクの負荷内部温度が監視されます。温度が約90°Cに 達すると、OTPメッセージが表示され、ユニットは自動的にLOAD OFF状態に切り替わります。OTPエラーが発生した場合は、周囲 温度が0~40°Cであることを確認してください。また、メインフレームの前面と背面の通気口がふさがれていないことを確認してください。空気の流れは本体の前面から取られ、背面から排出されます。したがって、本体の背面に適切なギャップを残す必要があります。15cm以上をお勧めします。適切な冷却期間の後、負荷を切り 替えることができるようになります。

逆接続 LSP シリーズは、ロードモジュールの最大定格電流までの逆電流 に耐えます。「-」記号が電圧および電流ディスプレイに表示されま す。

注意 🔨

逆接続の状況が発生した場合、LOAD キーがオフの場合でも負荷 は電流をシンクします。負荷がシンクする逆電流は本体表示されま せん。

負荷の最大定格電流までの逆電流を流す事ができる設計となって いますが、逆電流が負荷の最大定格電流よりも大きい場合、負荷 が故障します。

負荷が逆接続になる可能性がある場合は、負荷ラインに電流を遮 断する部品または装置を入れて下さい。

これらの電流を遮断する部品または装置は、高速で動作し、負荷 の最大定格電流+5%で定格が定められている物をご使用ください。

1-2. アクセサリー

付属品	説明	個数
電源コード	地域および TYPE により異なります。	1
バナナプラグ	バナナプラグ 赤(センシング用)	1
	バナナプラグ 黒(センシング用)	1
付属キット	丸端子 (負荷入力用)	2
	M8 六角ボルト L=35mm	4
	M8 ネジ L=35mm	4
	M8 ナット	4
	M8 ワッシャ	8
	HD-DSUB ケーブル(15ピン 1.5m)	1
	BNC-BNC ケーブル	1

オプションアクセサリー	品名
GP-IB インタフェース	PEL-022
RS-232C インタフェース	PEL-023
LAN インタフェース	PEL-024
USB インタフェース	PEL-025
LSP 用リングフック	PEL-026
LSP 用ラックマウントキット(6kW)	PEL-027-1
LSP 用ラックマウントキット(8kW/10kW/12kW)	PEL-027-2
LSP 用ラックマウントキット(15kW/18kW)	PEL-027-3
LSP 用ラックマウントキット(20kW/24kW)	PEL-027-4
LSP 用取っ手	PEL-028
USB ケーブル	GTL-246 USB ケーブル、1.2m
GP-IB ケーブル	CB-2420P GP-IB ケーブル、2m

1-3. 動作モードの説明

1-3-1. CC モード

概要

定電流の動作モードでは、LSP シリーズは、入力電圧に関係な くプログラムされた値に従って電流をシンクします。

1-3-2. CR モード

概要

定抵抗モードでは、LSPシリーズは、プログラムされた抵抗設定 に従って負荷入力電圧に直線的に比例する電流をシンクしま す。

1-3-3. CV モード

概要

定電圧モードでは、LSP シリーズは、負荷の入力電圧がプログ ラムされた値に達するまで、十分な電流をシンクしようとします。

1-3-4. CP モード

概要

定電力モードでは、LSP シリーズは、プログラムされた電力に従って負荷電力(負荷電圧×負荷電流)をシンクしようとします。

1-3-5. スルーレート

概要

スルーレートは、時間の経過に伴う電流または電圧の変化とし て定義されます。プログラム可能なスルーレートにより、ある負 荷設定から別の負荷設定への制御された遷移が可能になりま す。これは、誘導電源配線での誘導電圧降下を最小限に抑える ため、またはテストデバイスで誘導される過渡現象(電源の過渡 応答テスト中に発生するような)を制御するために使用できま す。

ある設定から別の設定への移行が大きい場合、実際の遷移時間は電圧または電流遷移をスルーレートで割って計算できます。実際の移行時間は、入力が10%から90%に変わるか、プログラムされた移動域の90%から10%に変更するのに必要な時間として定義されます。

ある設定から別の設定への遷移が小さい場合、(負荷の)信号 帯域幅が小さいため、すべてのプログラム可能なスルーレート の最小遷移時間が制限されます。この制限により、実際の遷移 時間は、スルーレートに基づく予想時間よりも長くなります。 立ち上がり時間遷 移の制限

したがって、実際の遷移時間を決定するときは、最小遷移時間 とスルーレートの両方を考慮する必要があります。以下の詳細 な説明は、仕様書から除外されています。

与えられたスルーレートの最小遷移時間は約30%以上の負荷 変化であり、スルーレートは最小遷移時間から100%の負荷変 化での最大遷移時間まで増加します。実際の遷移時間は、最 小遷移時間または合計スルー時間(遷移をスルーレートで割っ た値)のいずれか長い方になります。

LSP123-601、600V/840A/12000W (CCH-CCL>840A×30%) 次の式を使用して、特定のスルーレートの最小遷移時間を計算 します。最小遷移時間= 252A/スルーレート(A/s)。 10.5µs(=252A/24)×0.8(10%~90%)=8.4µs 次の式を使用して、特定のスルーレートの最大遷移時間を計算 します。最大遷移時間=840/スルーレート(A/s)。

35µs(=840A/24)×0.8(10~90%)=28µs

例 CCH=168A、CCL=0A、スルーレート=24A/s の場合、予想 時間は 5.6µs ですが、実際の遷移時間は 4.8µs に制限されま す。

7µs(=168/24)×0.8(10%~90%)=5.6µs

注意

CCモードのスルーレートがレンジ1の場合、CCL設定は仕様よ り少なくとも 0.1%大きくなります。

1-3-6. ダイナミック波形の定義

概要

スタティック動作に加えて、LSP シリーズは、定電流(CC)、定抵 抗(CR)、または定電力(CP)で動作するダイナミックモードも構 築されています。これにより、テストエンジニアは、実際のパルス 負荷をシミュレートしたり、時間とともに変化する負荷プロファイ ルを実装したりできます。

ダイナミック波形は、LSP の前面パネルからプログラムできま す。ユーザーは、最初に Level キーを使用して負荷電流の高い 値と低い値を設定します。次に、ダイナミック設定により、これら 2 つの電流値間の立ち上がり時間と立ち下がり時間を調整でき ます。波形の高いほうの時間(Thigh)と波形の低いほうの時間 (Tlow)も設定できます。

ダイナミック波形は、オプションのコンピュータインタフェースを介 して設定することもできます。ロードモジュールの前面パネルか らのダイナミック波形設定は、LSP シリーズのメモリに保存する こともできます。保存/呼出し手順およびコンピュータコマンドセッ トについては、LSP の関連する操作マニュアルを参照してくださ い。

その他のダイナミック波形の定義は次のとおりです。

- ・ ダイナミック波形の周期は Thigh+Tlow です。
- ダイナミック周波数=1/(Thigh+Tlow)
- デューティサイクル=Thigh/(Thigh+Tlow)

例 1 LSP シリーズ、最大 50kHz のダイナミック周波数
 ダイナミック最高周波数 50kHz=0.02ms=20µs

Thigh=10µs、Tlow=10µs、Thigh+Tlow=20µsの設定 (CCH-CCL)/SR≦10µs CCH=30A、CCL=10Aの設定 (30-10)/2.5A/µs≦10µs 8µs≦10µs、周波数 50kHz への準拠

8

Thigh=10µs、Tlow=10µs、Thigh+Tlow=20µsの設定 (CCH-CCL)/SR≦10µs CCH=50A、CCL=0Aの設定 (50-0)/2.5A/µs=20µs, 20µs>10µs、周波数 50kHz に準拠して いません アナログプログラミング入力は、ダイナミック波形を実装する便 利な方法も提供します。

1-4. 動作範囲

例 2

LSP シリーズは、手動およびリモートで操作できます。 LSP シリーズは、前面パネルでローカルに制御することも、GP-IB/RS-232C/USB/LAN を介してコンピュータでリモート制御することもできます。定電流(CC)モード、定抵抗 (CR)モード、定電圧(CV)モード、定電力(CP)モードがあります。定電流モードでは、 独立した立ち上がりおよび立ち下がり電流スルーレートを備えた広範囲のダイナミック 負荷と、任意の波形入力を備えたアナログプログラミング入力を利用できます。

1-5-1. 前面パネル

- 1. 電源スイッチ
- 2. LCD マルチファンクションディスプレイ
- 3. System +-
- 4. Function +-
- 5. Test function +-
- 6. 数字キー
- 7. 設定つまみ

1-5-2. LCD ディスプレイ

表示されます。

		テスト中、左側のディスプレイに負荷入力電圧が表示されま す。
3.	SEQ.インジケータ	AUTO SEQUENCE モードに入ると、LCD インジケータが 点灯します。
4.	REM LCD インジケ ータ	REMOTE LCD インジケータが点灯している場合、本器が オプションのインタフェースの1つを介してリモートで動作し ていることを意味します。REMOTE が点灯している間は、 前面パネルで、手動で設定することはできません。本体の LOCAL キーを使用して、前面パネルのコントロールに戻す ことができます。本器を前面パネルから操作しているとき は、REMOTE LCD は点灯しません。
5.	LAN モード時点灯	内部の LAN インタフェースです。
6.	DYN/STA LCD イ ンジケータ	DYN キーを使用すると、ユーザーは DYNAMIC 操作と STATIC 操作を切り替えることができます。ダイナミック動作 は、定電流(CC)モードまたは定電力(CP)モードでのみ可 能です。DYNAMIC 操作を選択すると、DYN キー横の LCD が点灯します。定抵抗(CR)または定電圧(CV)モードの場 合、DYN キーを押しても効果はありません。
7.	レンジ LCD インジ ケータ	LSP シリーズは、CC、CR、CV、CP 動作用の 2 つの設定 範囲を備えています。これにより、LSP ユーザーは手動で 低い値を設定して、解像度を向上させることができます。デ フォルトの AUTO モードのままにすると、入力した設定値に 応じて範囲間の切り替えが自動的に行われます。 必要に応じて、RANGE キーを押して、本器を RANGE II で のみ動作させることができます。これは、付随する LCD が 点灯することによって通知されます。 CC モードでのみ RANGEII を強制することが可能です。
8.	Level LCD インジ ケータ	LEVELキーは、負荷 High レベルまたは負荷 Low レベルを プログラムするために使用されます。設定値は、CC、CR、 CV、CP のいずれのモードが選択されているかによって、電 流、抵抗、電圧、電力の間で変化します。LCD が点灯して いる場合は、High レベルの設定が有効になっています。 LCD が点灯していない場合は、ロータリースイッチと矢印キ ーを組み合わせて負荷 Low レベルを設定できます。 スタティックモードでは、ユーザーは操作中に負荷 High レ ベルと負荷 Low レベルを切り替えることができます。 ダイナミック動作 (CC および CP モードのみ)では、プリセッ トされた High レベルと Low レベルを使用してダイナミック波 形を定義します。
	注意/書	逆は、High レベルを Low レベルより下に設定できないとい

う点でも当てはまります。

9.	NG LCD インジケ 一タ	ユーザーは、CONFIG メニュー内で電圧、電流、および電 カの上限と下限を調整し、NG インジケータをオンにするこ とができます。電圧計、電流計、または電力計の測定値が これらの設定された制限を超えている場合、NG インジケー タが点灯します。
10.	GP-IB モード時の 点灯	電源を入れると、LCD の GPIB が点灯します。PSL シリー ズが PCを介して GP-IB で制御されている場合、GPIB が点 灯します。
11.	RS-232C モード時 点灯	電源を入れると、LCDのRS232が点灯します。LSPシリーズがPCを介してRS-232Cで制御されている場合、RS232が点灯します。
12.	USB モード時点灯	内部の USB インタフェースです。
13.	右側 5 桁 LCD	右側の5桁のディスプレイで、本器がノーマルモードである
	ディスプレイ	か、設定メニューの1つがアクティブになっているかに応じ て機能が変わります。 設定表示:
		システム設定状態または AUTO SEQUENCE 設定値を表示します。
	ノーマルモード	ノーマルモードでは、右側の5桁のディスプレイに消費電力 がワット(W)で表示されます。
	設定モード	右側のディスプレイと回転調整ノブを使用して値を設定しま す。
		値は、アクティブな設定機能に応じて変化します。中央の
		LCD は、設定メニューのどの部分がアクティブであるかをユ
		ーザーに知らせるテキストメッセージを提供します。
14.	中央 5 桁 LCD ディスプレイ	中央の5桁のディスプレイも、ユーザーがノーマルモードで あるか、設定メニューに入ったかによって機能が変わりま す。ステータス表示:
		システム設定または自動シーケンスに入ると、表示設定項 目が表示されます。
	ノーマルモード	ノーマルモードでは、中央の LCD ディスプレイは 5 桁の電
		流計として機能します。5桁の電流計は、負荷がオンのとき
		に DC 負荷に流れる負荷電流を示します。
	設定モード	CONFIG、LIMIT、DYN、SHORT、OPP、または OCP キー
		を押すと、中央の LCD に、設定機能に応じたテキストメッセ
		ージが表示されます。キーを押すたびに、ディスプレイは次
		合設 定メニューの 順序 は 以 トの とおり です。
		・ しつNFIG. 順定け 「SENSE」→[Dan」→[Daff」→[DOLAP」
		$\rightarrow [MPPT] \rightarrow [CPRSP] \rightarrow [AVG]$
		• LIMIT:

	順序は、「Add.CV」→「V_Hi」→「V_Lo」→「I_Hi」→ 「I_Lo」→「W_Hi」→「W_Lo」→「NG」
	• DYN 設定:
	順序は、「T-Hi」→「T-Lo」→「RISE」→「FALL」
	• SHORT:
	順序は、「PRESS」→「TIME」→「V_Hi」→「V_Lo」
	順序は、「PSTAR」→「PSTEP」→「PSTOP」→「Vth」
	・ UCP. 順度け「ISTAP」→「ISTEP」→「ISTOP」→「\/tb」
PRESET +	ち側のディスプレイに入力された設定の値は 選択された
	る人間のアイバンレイにパンビイルに改定の値は、送代Cイルに 動作モードに広じて変化します
	・ CC モードが選択されている場合 右側のディスプレイ
	にアンペア「ム」の設定が表示されます
	・ CR モードが選択されている場合 右側のディスプレイ
	にオーム「〇」の設定が表示されます。
	 CP モードが選択されている場合。右側のディスプレイ
	にワット「W」の設定が表示されます。
	 CV モードが選択されている場合、右側のディスプレイ
	にボルト「V」の設定が表示されます。
LIMIT	LIMIT キーを押すたびに、LCD 内の中央のテキストが変更
	されます。下部ディスプレイに表示されるシーケンスと対応
	する設定値は次のとおりです。
	CC+CV または CP+CV の上限電圧を設定します。 ディスプ
	レイの中央には「Add.CV」と表示され、右側のディスプレイ
	には設定値が表示されます。単位は「V」です。
	 V_Hi(左制限電圧)は、設定値をボルト「V」で表示しま
	す。
	・ V_Lo(右制限電圧)は、設定値をボルト「V」で表示しま
	す。
	I_Hi(左制限電流)は、設定値をアンペア「A」で表示しま
	・ I_LO(石制限電流)は、設定値をアンペア「A」で表示し
	 W_HI(左制限電刀)は、設定値をリット「W」で表示します。
	9。
	 W_L0(石制限電力)は、設定値をワットW」で表示します。
	ッ。 ・ NC け NC コーグが「ON」またけ「OFF」のドナミニシ
	テキャイハスかたまテレキオ
DVN 設守	
	あれば、 変わります。 下部ディスプレイにままされる順度と対応する。
	えい ション いっし ション
	以たには久いとのうしょ。

	 T-Hi(time high)は、設定値をミリ秒「ms」で表示します。
	 T-Lo(time low)は、設定値をミリ秒「ms」で表示します。 立ち上がり(電流の立ち上がり時間/スルーレート)は、 設定値を「A/µs」または「A/ms」で表示します。 立ち下がり(電流の立ち下がり時間/スルーレート)は、 設定値を「A/µs」または「A/ms」で表示します。
CONFIG	 CONFIGキーを押すたびに、LCD内の右上のテキストが変わります。 下部のディスプレイに表示される順序と対応する設定値は次のとおりです。 SENSE は「AUTO」または「ON」に設定できます。 LDon(負荷 ON 電圧)は、設定値をボルト「V」で表示します。 LDoff(負荷 OFF 電圧)は、設定値をボルト「V」で表示します。 POLAR(負荷極性)は「+LOAD」または「-LOAD」に設定できます。 POLAR(負荷極性)は「+LOAD」または「-LOAD」に設定できます。 MPPT(最大電力点追従) BATT1(バッテリー放電) BATT3(バッテリー放電) CPRSP(CP RESPONSE) AVG
SHORT テスト	ショートテストのパラメータを設定できます。 SHORT キーを押すたびに設定機能が移動します。ショート テストの順序と設定値は次のとおりです。
	 Short Press Start (Start/Stop キーを押すとテストが開始されます。) TIME は、SHORT テストの期間を示します。下部ディスプレイの「CONTI」は、連続を示します。時間は「ms」で調整できます。 V-Hi(電圧 High しきい値)は、設定値をボルト「V」で表示します。 V-Lo(電圧 Low しきい値)は、設定値をボルト「V」で表示します。 テストが開始されると、右側のディスプレイに RUN と表示されます。テストが終了すると、右側のディスプレイに END が表示されます。
OPP テスト	過電力保護テストのパラメータを設定できます。OPP キー を押すたびに設定機能が移動します。OPP テストの順序と 設定値は次のとおりです。 ・ OPP Press Start (Start/Stop キーを押すとテストが開

始されます。)

- PSTAR(電力開始点)の右側のディスプレイにて、ワット「W」で設定します。
- PSTEP(電力ステップ)の右側のディスプレイにて、ワット「W」で設定します。
- PSTOP(電力終了点)の右側のディスプレイにて、ワット「W」で設定します。
- VTH(電圧しきい値)の右側のディスプレイにて、ボルト 「V」で設定します。

テストが開始されると、右側のディスプレイに負荷が取って いる電力値が表示されます。DUT が設定された値に従って 負荷を供給できる場合、右側のディスプレイには PASS が 表示され、右側のディスプレイには OPP テスト中に消費さ れた最大電力が表示されます。テスト中に OTP が表示され た場合は、過熱保護が有効になっています。同様に、OCP がディスプレイに表示されている場合は、過電流保護がア クティブになっています。

- OCP テスト 過電流保護テストのパラメータを設定できます。OCP キー を押すたびに設定機能が移動します。 OCP テストの順序と設定値は次のとおりです。
 - OCP Press Start (Start/Stop キーを押すとテストが開始されます。)
 - ISTAR(電流開始点)の右側のディスプレイにて、アンペア「A」で設定します。
 - ISTEP(電流ステップ)の右側のディスプレイにて、アンペア「A」で設定します。
 - ISTOP(電流終了点)の右側のディスプレイにて、アンペア「A」で設定します。
 - VTH(電圧しきい値)の右側のディスプレイにて、ボルト 「V」で設定します。

テストが開始されると、右側のディスプレイに負荷によって 取得されている現在の値が表示されます。テスト対象のデ バイスが設定された値に従って負荷を供給できる場合、中 央のディスプレイには PASS が表示され、右側のディスプレ イには OCP テスト中に消費された最大電流が表示されま す。テスト中に OTP が表示された場合は、過熱保護が有 効になっています。同様に、OPP がディスプレイに表示さ れている場合は、過電力保護がアクティブになっています。

 Mode とインジケー LSP シリーズには「MODE」キーを押すことで選択できる4
 タ つの動作モードがあります。順序は、定電流(CC)、定抵抗 (CR)、定電圧(CV)、および定電力(CP)です。「MODE」
 キーを押すたびに動作モードが変わります。実際に選択されている動作モードはディスプレイの左側に表示されます。

第2章. 機能の説明

2-1. FUNCTION キーの説明

FUNCTION			
SEQ Mode	Step Preset	Load On/Off	
Time Range	Repeat Level	Exit DYN STA	
Save Config	Limit	DYN Setting	

<u>-Q</u> ode	 4 つの動作モートかめります。これらは、LSP シリーズ本体の「MODE」キーを押すことで順番に選択できます。順序は次のとおりです。 (CC)定電流 (CR)定抵抗 (CV)定電圧 (CP)定電力
	選択した動作モードに応じて、適切な LCD が点灯し ます。
ad /Off	LSP シリーズへの入力は、「LOAD」キーを使用して オン/オフを切り替えることができます。ON / OFF 状 態は、キーの点灯により表示されます。 LOAD キー点灯=LOAD ON(プリセット値に応じて 負荷をシンク) LOAD キーが消灯=LOAD OFF(負荷は電流をシン クしません) LOAD OFF にしてもプリセット値には影響しませ ん。LOAD ON 状態を有効にすると、本器はプリセッ ト値に従ってシンクに戻ります。 Load ON/OFF キーを操作すると、負荷が流れる電 流は、プリセットレートに従って時間とともに RISE ま たは FALL に従います。電流の RISE と FALL の時 間は、フロントパネルの DYN 設定キーで調整できま す。
	ad /Off

が自動的にエネルギーのシンクを開始または停止 する電圧レベルを調整することもできます。調整可 能な LDon および LDoff 電圧レベルは、CONFIG メ ニューにあります。

LDoff レベルを LDon レベルより高く設定することは できませんのでご注意ください。

PRESET キーを押すと、キーが点灯し、PRESET モードにアクセスしたことを示します。下の5桁の表 示は、消費電力をワットで表示するものから、プリセ ットする値を表示するものに変わります。プログラム 可能な値は、選択した動作モードに移動します。

- 定電流(CC)モード: 負荷電流のAおよびBレベルは、右側の5桁のLCDであらかじめ設定できます。「A」が点灯し、設定値がアンペアであることを示します。
- 定抵抗(CR)モード:
 負荷抵抗のAおよびBレベルは、右側の5桁のLCDであらかじめ設定できます。「Ω」が点灯し、設定値がオームであることを示します。
- 定電圧(CV)モード: 負荷電圧のAおよびBレベルは、右側の5桁のLCDであらかじめ設定できます。「V」が点灯し、設定値がボルトであることを示します。
- 定電力(CP)モード:
 負荷電力のAおよびBレベルは、右側の5桁のLCDであらかじめ設定できます。「W」が点灯し、設定値がワットであることを示します。
- ダイナミックモード(CC、CR、または CP モード のみ):

DYN / STA キー

DYN

DYN/STA キーを押すたびに、ダイナミック負荷とス タティック負荷が切り替わります。DYN 設定は、ダイ ナミック波形を定義するために、High レベルおよび Low レベルの負荷電流と組み合わせて使用されま す。DYN Setting キーを押すたびに、T_Hi(High 時間)、T_Lo(Low 時間)、立ち上がり時間、そして立 ち下がり時間に切り替わります。LCD の中央には、 ロータリノブでプログラムされ、右側のディスプレイ から読み取られるダイナミック波形のセクションが表 示されます。「ms」は、設定がミリ秒単位でプログラ ムされていることを示します。

Preset キーとLED インジケータ

Range ≠—	Range	LSP シリーズは、CC、CR、CV、CP 動作用に2つ の設定範囲を備えています。これにより、低い値を 設定するための解像度が向上します。デフォルトの AUTO モードのままにすると、入力した設定値に応 じて範囲間の切り替えが自動的に行われます。 必要に応じて、RANGE キーを押して、本器を RANGE II でのみ動作させることができます。これ は、付随する LED が点灯することによって通知され ます。
	注意	CCモードでのみ RANGE IIIに強制することができま す。
Level +—	Level	LEVEL キーは、High 負荷値または Low 負荷値を プログラムするために使用されます。設定値は、 CC、CR、CV、CP のいずれのモードが選択されて いるかによって、電流、抵抗、電圧、電力の間で変 化します。LED が点灯している場合は、High レベル 値の設定が有効になっています。LED が点灯して いない場合は、ロータリノブと矢印キーを組み合わ せて Low 負荷レベルを設定できます。 スタティックモードでは、ユーザーは操作中に高負 荷レベルと低負荷レベルを切り替えることができま す。 ダイナミック動作(CC および CP モードのみ)では、 プリセットされた High レベルと Low レベルを使用し てダイナミック波形を定義します。
	注意	Low レベル設定は High レベルを超えることはでき ません。逆に、High レベルを Low レベルより下に設 定できません。
Limit +—	Limit	Limit キーを使用すると、ユーザーは電圧、電流、または電力の左右のしきい値を設定できます。これらのしきい値設定は、負荷が目的の制限を超えて動作しているときにフラグを立てるためにNG機能と組み合わせて使用されます。
		Limit キーを押すたびに、異なる値を入力できます。 Limit キーを最初に押すと、キーが点灯し、LCDの 中央に Add.CV が表示されます。設定はロータリノ ブで行い、設定時に右側ディスプレイから読み取る ことができます。

設定手順を以下に示します。(例として、 LSP123-601の設定範囲の場合)

- ・ Add.CV (CC+CV or CP+CV の上限)
- V_Hi (電圧計の上限)
- ・ V_Lo (電圧計の下限)
- I_Hi (電流計の上限)
- I_Lo (電流計の下限)
- W_Hi (電力計の上限)
- ・ W_Lo (電力計の下限)
- ・ NG OFF/ON (No Good フラグ)
- Limit 設定機能 OFF

単位は、設定されているしきい値 Limit に応じて、 「V」、「A」、または「W」になります。

CC+CV または CP+CV 上限電圧の設定で、LCD 内の中央 5 桁のディスプレイに「Add.CV」、右側 5 桁のディスプレイの単位は「V」です。Add.CV の設 定範囲は 0.00V~600.00V で、0.01V ステップです。 ロータリノブを回して設定します。

CC	0.000v	STATIO CONTRACT	0.000v	STATIC	
	AddEl	0.00v	AddEV	60000,	

上限電圧 VH の設定で、LCD 内の中央の5桁のディスプレイに「V-Hi」表示、右側5桁のディスプレイに
電圧計の上限を表示し、単位は「V」です。 V_Hi の 設定範囲は 0.00V~600.00V で、 0.01V ステップで す。 ロータリノブを回して設定します。

0.000,	STATIO	86	0.000v	STATIC
V_H,	0.00v		V_H.	600.00v

下限電圧 VL の設定で、LCD 内の中央の5桁のデ ィスプレイに「V-Lo」表示、右側5桁のディスプレイ に電圧計の下限を表示し、単位は「V」です。V_Lo の設定範囲は0.00V~600.00Vで、0.01V ステップ です。ロータリノブを回して設定します。

上限電流 IH の設定で、LCD 内の中央の5桁のディ スプレイに「I-Hi」表示、右側5桁のディスプレイに電 流計の上限を表示し、単位は「A」です。I-Hi の設定 範囲は 0.000A~840.00A で、0.0001A ステップで す。ロータリノブを回して設定します。

下限電流 IL の設定で、LCD 内の中央 5 桁のディス プレイに「I-Hi」表示、右側 5 桁のディスプレイに電流 計の下限を表示し、単位は「A」です。I-Lo の設定範 囲は 0.000A~840.00A で、0.0001A ステップです。 ロータリノブを回して設定します。

上限電力 WH を設定で、LCD 内の中央 5 桁のディ スプレイに「W-Hi」表示、右側 5 桁のディスプレイに 電力計の上限を表示し、単位は「W」です。W-Hi の 設定範囲は 0W~12000W で、1W ステップです。ロ ータリノブを回して設定します。

0.000v	STATIC PLANET	 0.000v	STATIC
N_H,	0,0 ×	W_H,	12000.0*

下限電力WLを設定で、LCD内の中央5桁のディ スプレイに「W-Lo」表示、右側5桁のディスプレイに 電力計の下限を表示し、単位は「W」です。W-Loの 設定範囲は0W~12000Wで、1Wステップです。

ことができます。

設定手順を以下に示します。

- T_Hi(High 波形の時間)
- T_Lo(Low 波形の時間)
- RISE(立ち上がり時間)
- FALL(立ち下がり時間)
- DYN 設定機能 OFF

波形が High になる時間には立ち上がり時間が含まれ、「ms」で設定されます。

波形が Low になる時間には立ち下がり時間が含まれ、「ms」で設定されます。

RISE と FALL の時間は「A/µs」で設定されます。実 際単位は、右側 5 桁のディスプレイの右側に表示さ れます。

DYN Setting キーを押すと、LED が ON し High レ ベルの時間設定になり、LCD 内の中央 5 桁のディ スプレイに「T_Hi」が表示され、右側 5 桁のディスプ レイに設定値が表示されます、単位は「ms」です。 T_Hi の設定範囲は 0.010ms~9999ms で、 0.001ms ステップです。ロータリノブを回して設定し ます。

0.010ms~9999msまで、4つの範囲があり、範囲は 次のとおりです。

- 範囲 1:0.010ms~9.999ms
- 範囲 2:10.00ms~99.99ms
- 範囲 3:100.0ms~999.9ms
- 範囲 4:10000ms~9999ms

Low レベルの時間設定では、LCD 内の中央5桁の ディスプレイに「T_Lo」が表示され、右側5桁のディ スプレイに設定値が表示されます、単位は「ms」で す。T_Loの設定範囲は0.010ms~9999msで、 0.001ms ステップです。ロータリノブを回して設定し ます。

C	0.000v	STATIO ^{# The sector of the sec}	0.000v	STATIC
	T_Lo	0.050 🕫 🦳	T_Lo	9999 ms

立ち上がり時間の設定では、LCD 内の中央5桁の ディスプレイに「RISE」が表示され、右側5桁のディ スプレイに設定値が表示されます。単位は「A/µs」で す。RISE 時間の設定範囲は

0.672A/µs~42.840A/µs で、0.168A/µs ステップで す。 ロータリノブを回して設定します。

立ち下がり時間の設定では、LCD内の中央5桁の ディスプレイに「FALL」が表示され、右側5桁のディ スプレイに設定値が表示されます。単位は「A/µs」で す。FALL時間の設定範囲は

0.672A/µs~42.840A/µs で、0.168A/µs ステップで す。 ロータリノブを回して設定します。

	■ 0.000v FALL	0.6 7.2 Aus	■ 0.000v FALL	57470 ###################################
Config +	Config	Config キーを使用 動させるか、オンに を使用すると、電圧 動的にオン/オフに は、Config メニュー Config キーを押す 動します。Config = します。値はロータ	すると、センス株 することができ レベルに達した することもできま -から切り替える たびに、メニュー キーを最初に押 のノブで設定でる	機能を自動的に作 ます。Config キー ときにロードを自 す。極性記号 こともできます。 ーが 1 ステップ移 すと、キーが点灯 きます。設定値は

右側のディスプレイから読み取ることができます。設 定手順を以下に示します。

- ・ SENSE(AUTO または ON)
- ・ LDon(LOAD が ON する電圧)
- ・ LDoff(LOAD が OFF になる電圧)
- ・ POLAR(極性記号の変更)
- MPPT
- CPRSP
- ・ Config オプションを終了します。

注意 ・ 調整可能な LDon (LOAD ON)電圧は、CC、 CR、および CP の動作モードで有効です。調整 された LDon 電圧は CV モードでは動作しませ ん。

> LDon (LOAD ON)電圧設定は、LDoff (LOAD OFF)電圧より低くすることはできません。LOAD ON とLOAD OFFの両方に 0V が必 要な場合は、最初に LOAD OFF 調整を行います。

Vsense と負荷入力の切り替え方法を設定すると、 LCD 内の中央 5 桁のディスプレイに「SENSE」と表示され、右側 5 桁のディスプレイに「AUTO」または「ON」と表示されます。

CC	0.000,	STATIC PRANTICE LANCE	N	CC	0.000v	STATIC PRANTIL CONTRACTOR
	SENSE	AUTO			SENSE	DN

Load ON 電圧を設定します。LCD 内の中央5桁の ディスプレイに「LDon」が表示されます。右側5桁の ディスプレイに設定値が表示されます。単位は「V」 です。ロードオン電圧の設定範囲は 0.8V~100.0V で、0.4V ステップです。ロータリノブを回して設定し ます。負荷が入力電圧の Load ON 電圧設定よりも 大きい場合、電子負荷が電流負荷をかけ始めま す。

" 0.000 L]]or		■ 0.000v L]]on	
注意	CC/CR/CP モード れますが、CV モー されません。	は Load ON 電圧 -ドは Load ON 電	Eによって制御さ 『圧によって制御
	Load OFF 電圧を のディスプレイに「「 桁のディスプレイに」 です。Load OFF 電 で、0.01V ステップ ます。負荷入力電」 低い場合、電子負	設定します。LCC LDoFF」と表示さ 設定値が表示さ 配圧の設定範囲(です。ロータリノ 王が Load OFF 荷はロードをオフ	0内の中央5桁 れます。右側5 れ、単位は「V」 は0.0V~99.00V ブを回して設定し 設定電圧よりも いにします。
0.000		[■] 0.000v	STATIC

Load 極性を設定します。LCD 内の中央 5 桁のディ スプレイに「POLAR」と表示されます。右側の 5 桁 のディスプレイに「+LOAD」または「-LOAD」が表示 されます。ロータリノブとキーで「+LOAD」または 「-LOAD」を設定します。

LIIOFF

99.00

66	0.000v	STATIC		CC	0.000v	STATIC MINING IN A STATE
	POLAR	+LOAD	$ \Rightarrow$		POLAR	-LOAI

000,

LIOFF

MPPT(最大電力点追従)テストを設定すると、LCD 内の中央5桁のディスプレイに「MPPT」と表示され ます。右側5桁のディスプレイには「1000」が表示さ れます。MPPTの設定範囲は1000ms~60000ms です。

CPRSPを設定すると、LCD内の中央5桁のディス プレイに「CPRSP」が表示されます。5桁のディスプ レイの右側に「0」が表示されます。CPRSPの設定 範囲は0~4で、1ステップです。ロータリノブを回して

	設定しま ⁻ い、4:遅	す。 CP モードの い、 です。)反応速度の設	(定は、0:速
" 0. C Pi	000v ^{sians} 75P (] → E	0.000v PRSP	ISTATIC CONSIGNATION
	AVGを読 イに「AVG 右側に「1 1~64 で、 します。	定すると、LCD G」と表示されま 」と表示されま [、] 1 ステップです)内の中央5桁 :す。5桁のディ す。AVG の設え 。ロータリノブを	のディスプレ スプレイの 主範囲は
⁶⁰ ∩		MANGE LEVEL		STATIC RANGE LEVEL

0.000		■ 0.000v	STATIC MANAGEMENT
AŀG	1	í Al∕G	64

2-2. Test キーの説明

SHORT モードの 設定 Setting キーを使用すると、SHORT 回路テストのパ ラメータを入力できます。SHORT テストでは、電源 の保護と動作を確認するために、LSP シリーズの負 荷最大電流まで大電流をシンクしようとします。テス ト時間を調整し、High 電圧制限と Low 電圧制限の しきい値を設定できます。

Setting	Setting キーを1回押すと、キーが点灯します。 「SHORT PRESS START」というメッセージがディ スプレイに表示されます。		
Setting	SHORT キーを押すたびに、メニューが 1 ステップ移動します。LCD 内の左側と中央のディスプレイには、現在選択されているテストパラメータがテキストとして表示されます。値はロータリノブで調整します。設定値は右側のディスプレイから読み取ることができます。		
	設定手順を以下に示します。		
	 SHORT PRESS START(Start/Stop キーを押 すとテストが開始されます) 		
	 SHORT Time(CONTI =連続または 100ms から 10,000ms まで可能) 		
	 SHORT V_Hi(High 電圧しきい値設定) 		
	 SHORT V_Lo(Low 電圧しきい値設定) 		
	・ Exit SHORT テストのセットアップを終了します		
SHORT PRESS	START FLO 0.00v		
SHORT TIME	NAMATTANAT NAMATTANATTANAT EONTI PRESS START		

SHORT テスト時間を設定すると、LCD 内の左側の 5 桁のディスプレイに「SHORT」、中央の5 桁のディ スプレイに「TIME」、右側の5 桁のディスプレイに 「CONTI」と表示されます。単位は「ms」です。

TIME: SHORT テスト時間を設定します。LCD 内の 左側 5 桁のディスプレイに「SHORT」、中央 5 桁の ディスプレイに「TIME」、単位は「ms」、右側 5 桁の ディスプレイに「CONTI」と表示されます。設定範囲 は「CONTI」(連続を意味します)、またはロータリノ ブを時計回りに回して、範囲は 100ms~10000ms

SHORT V_H

600.00

で、100ms ステップで設定します。CONTI に設定す る場合、「Start/Stop」キーを押して SHORT テストを 停止するまで、SHORT テストに時間制限はありま せん。

V-Hi:SHORT テスト電圧チェック上限設定にする と、LCD内の左側5桁のディスプレイに「SHORT」、 中央5桁のディスプレイに「V-Hi」、右側5桁のディ スプレイに設定値を表示します。単位は「V」です。 V-Hi 設定範囲は、0.00V~600.00V で、ステップは 0.01V です。ロータリノブを回して設定します。

CC	SHORT	STATIC Provide in a series	SHORT	STATIC
	/_H+	0.00,	1/_H+	600 <u>00</u> v
		テフトパラメータたり		

	Stop	START テキストが表示されている間に Start/Stop キーを押すことによってテストが開始されます。テス ト中、LCD 内の右側のディスプレイに実行中と、実際のショート電流が表示されます。
	注意	 テスト中に測定された電圧レベルが V_Hiおよび V_Loのしきい値レベル内にとどまると、メッセー ジ PASS END が表示されます。
		 テスト中に測定された電圧レベルが V_Hiおよび V_Lo のしきい値レベルを超えた場合、メッセー ジ FAIL END が表示されます。NG フラグも点灯 します。
		 連続ショート時間を選択した場合は、赤い Start/Stop キーを押してテストを終了します。
OCP パラメータの 設定		OCPを使用すると、過電流保護テストのパラメータ を入力できます。OCPテストは、テスト対象デバイス (DUT)の保護と動作を検証するために、段階的に 負荷電流を増加させます。電圧しきい値レベルが設 定できます。テスト中に測定された電圧が設定され たしきい値電圧よりも低い場合、テストは失敗し、デ ィスプレイに OCP ERROR が通知されます。同様 に、電流のしきい値(I STOP)を設定できます。測定 された電流が ISTOP しきい値に達すると、テストが 中止され、OCP ERROR メッセージが表示されま す。

Setting

Setting キーを1回押すと、キーが点灯します。 「OCP PRESS START」というメッセージがディスプ レイに表示されます。

Setting キーを押すたびに、メニューが 1 ステップ移動します。LCD 内の左側と中央のディスプレイには、現在選択されているテストパラメータがテキストとして表示されます。値はロータリノブで調整し、設定値は右側ディスプレイから読み取ることができます。

設定手順を以下に示します。

- OCP VTH OCP PRESS START(赤い Start/Stop キーを押すとテストが開始されます)
- OCP I STAR(OCP テストの電流の開始点)
- OCP I STEP (I START からの増分電流ステッ プの値)
- OCP I STOP(OCP テストの電流上限しきい値
- OCP Vth(電圧しきい値設定)

ISTAR:開始電流ポイントを設定すると、左側5桁 のディスプレイには「OCP」が表示され、中央5桁の ディスプレイには「ISTAR」が表示され、右側のディ スプレイには設定値が表示されます。単位は「A」で す。設定範囲は、0.001AからCCモード仕様のフル スケールまでです。ロータリノブを回して設定しま す。

ISTEP:増分ステップ電流ポイントを設定します。L 左側 5 桁の LCD ディスプレイに「OCP」、中央 5 桁 の LCD ディスプレイに「ISTEP」、右側 5 桁の LCD ディスプレイには設定値が表示され、単位は「A」で す。設定範囲は 0.01A から CC モード仕様のフルス ケールまでです。ロータリノブを回して設定します。

CC	DEP	STATIC BANGE LEVEL		DCP	STATIC
	ISTEP	0.005 *	/	ISTEP	84000 *

ISTOP:停止電流ポイントの設定です。左側 5 桁の LCD ディスプレイに「OCP」、中央 5 桁の LCD ディ スプレイは「ISTOP」、右側 5 桁の LCD ディスプレイ の設定値、単位は「A」です。設定範囲は 0.000A か ら CC モード仕様のフルスケールまでです。ロータリ ノブを回して設定します。

CC	OC P	STATIC MARKED LANCE		- OCP	STATIC PARTY LUCE
	ISTOP	0.000 •	~⁄	ISTOP	<u>84000 ^</u>

ISTEP: 増分ステップ電流ポイントを設定します。左 側 5 桁の LCD ディスプレイに「OCP」、中央 5 桁の LCD ディスプレイに「ISTEP」、右側 5 桁の LCD ディ スプレイの設定値が表示され、単位は「A」です。設 定範囲は 0.01A から CC モード仕様のフルスケール までです。 ロータリノブを回して設定します。

ISTOP:停止電流ポイントの設定です。左側 5 桁の LCD ディスプレイに「OCP」、中央の 5 桁の LCD デ ィスプレイに「ISTOP」、右側の 5 桁の LCD ディスプ レイの設定値が表示され、単位は「A」です。設定範 囲は 0.000A から CC モード仕様のフルスケールま でです。ロータリノブを回して設定します。

Vth:しきい値電圧を設定します。LCD ディスプレイ の左側に「OCP」が表示され、中央5桁のLCD ディ スプレイ「Vth」、右側5桁のLCD ディスプレイの設 定値が表示され、単位は「V」です。設定範囲は 0.00V から電圧仕様のフルスケールまでです。ロー タリノブを回して設定します。

CC	0C P	STATIC REPORT	CC	0CP	STATIC PARTICULATION
	I/TH	0.00v	/	VTH 👘	600.00v

	Start Stop	テストパラメータが入力し、OCP PRESS START テ キストが表示されている間に赤い Start/Stop キーを 押すことでテストが開始されます。テスト中、LCD の 中央に実行中が表示され、実際に消費されている 電流が右側のディスプレイに表示されます。
	注意	DUT がテストに失敗すると、メッセージ OCP ERROR が表示されます。失敗の理由は、次のいず れかの条件によるものです。
		(a) DUT の電圧レベルが、テスト中に設定された 電圧しきい値(OCP Vth)を下回った。
		(b) DUT から取得した電流が、OCP ISTOP 設定 に達した。
		DUT の電圧が設定されたしきい値を超えたままの 場合、メッセージ PASS が表示されます。また、 OCP テストに合格するには、DUT から取得した電 流を ISTOP 設定と等しくすることはできません。
		DUT が OCP テストに合格すると、テスト中に消費された最大電流が右側の LCD に表示されます。
		PASS または OCP ERROR の場合、テストは自動 的に停止します。テスト中に赤い Start/Stop キーを 押すと、すぐに操作を停止できます。
OPP パラメータの 設定		OPPを使用すると、過電力保護テストのパラメータ を入力できます。OPPテストでは、テスト対象デバイ ス(DUT)の保護と動作を検証するために、段階的 に負荷電力を増やします。電圧しきい値レベルを設 定できます。テスト中に測定された電圧が設定され たしきい値電圧よりも低い場合、テストは失敗し、デ ィスプレイは OPP ERROR を通知します。同様に、 電力しきい値(P STOP)を設定できます。測定され た電力が PSTOP しきい値に達すると、テストは中 止され、OPP ERROR メッセージが表示されます。
	Setting	Setting キーを 1 回押すと、キーが点灯します。 「OPP PRESS START」というメッセージがディスプ レイ全体に表示されます。

OPP キーを押すたびに、メニューが1ステップ移動 します。左側と中央の LCD には、現在選択されてい るテストパラメータがテキストとして表示されます。 値はロータリノブで調整し、設定値は右側ディスプレ イから読み取ることができます。

設定手順を以下に示します。

- OPP PRESS START(赤い Start/Stop キーを 押すとテストが開始されます)
- OPP P STAR(OPP テストの電源開始点)
- OPP P STEP(P START からの増分電流ステッ プの値)
- OPP P STOP(OPP テストの上限しきい値電力 制限)
- OPP Vth(電圧しきい値設定)
- ・ OPP テストのセットアップを終了します

PSTAR:開始電力を設定します。LCD 内の左側 5 桁のディスプレイに「OPP」、中央 5 桁のディスプレ イに「PSTAR」、右側 5 桁のディスプレイに設定値が 表示され、単位は「W」です。設定範囲は 0.00W か ら CP モード仕様のフルスケールです。ロータリノブ を回して設定します。

PSTEP: 増分ステップ電力を設定します。LCD 内の 左側 5 桁の LCD ディスプレイに「OPP」、中央 5 桁 の LCD ディスプレイに「PSTEP」、右側 5 桁の LCD ディスプレイの設定値が表示され、単位は「W」で す。設定範囲は、0.00W から CP モード仕様のフル スケールまでです。ロータリノブを回して設定しま す。

PSTOP:停止電力を設定します。LCD内の左側5 桁のディスプレイには「OPP」が表示され、中央5桁 のディスプレイには「PSTOP」が表示され、右側の ディスプレイには設定値が表示されます。単位は 「W」です。設定範囲は 0.1W から CP モード仕様の フルスケールまでです。ロータリノブを回して設定し ます。

CP	OPP	STATIC PRODUCT		_ OPP	STATIC
	PSTOP	0 <u>0</u> *	_ /	PSTOP	12000,0*

Vth:しきい値電圧を設定します。LCD 内の左側 5 桁のディスプレイは「OPP」、中央 5 桁のディスプレ イは「Vth」、右側 5 桁のディスプレイは設定値を表 示し、単位は「V」です。設定範囲は 0.00V から電圧 仕様のフルスケールまでです。ロータリノブを回して 設定します。

101	OPP		OPP	STATIC PARTY AND A CONTRACTOR
	I∕TH	0.00 v 🄜	VTH	600 <u>0</u> 0v

テストパラメータを入力したら、OPP PRESS START テキストが表示されているときに赤い Start/Stop キーを押してテストを開始します。テスト 中、LCD 内の中央に実行中が表示され、実際に消 費されている電流が右側のディスプレイに表示され ます。

注意 DUT がテストに失敗すると、メッセージ OPP ERROR が表示されます。失敗の理由は、次のいず れかの条件によるものです。

- (c) DUT の電圧レベルが、テスト中に設定された 電圧しきい値(OPP Vth)を下回った
- (d) DUT から取得した電力が OPP PSTOP 設定 に達した。

DUT の電圧が設定されたしきい値を超えたままの 場合、メッセージ PASS が表示されます。また、 OPP テストに合格するには、DUT から取得した電 力を PSTOP 設定と等しくすることはできません。 DUT が OPP テストに合格すると、テスト中に消費さ れた最大電力が右側のディスプレイに表示されま す。

PASS または OPP ERROR の場合、テストは自動 的に停止します。テスト中に赤い Start/Stop キーを 使用すると、すぐに操作を停止できます。

バッテリー放電の DISch 設定 CC モー DISch CP モー	DISch CC モード	CC	DISch	STATIC PRANE	
			11011E	LL	
	DISch	CC	DISch	STATIC REALISE CLEVE	
	СР — Р		MODE	C P	

DISch テスト機能には、「CC」、「VOLT.V」、 「TIME.S」、「CAP.AH」、および「CAP.WH」の5つ のパラメータがあります。

Setting キーを押して停止放電電圧「VOLT.V」を設 定し、もうー度設定キーを押して停止放電時間 「TIMES.S」を設定します。もう一度 Setting キーを 押すと、放電容量「CAP.AH」/「CAP.WH」を設定し ます。

バッテリー放電の CC モードでは、LCD 内の左側 5 桁のディスプレイに「DISch」、中央 5 桁のディスプレ イに「CC」、右側 5 桁のディスプレイに設定値を表示 し、単位は「A」です。設定範囲は 0.00A から電流仕 様のフルスケールまでです。ロータリノブを回して設 定します。

停止放電電圧 STOP「VOLT.V」の設定で、LCD内 の中央5桁のディスプレイに「VOLT.V」、右側5桁 のディスプレイに設定値を表示し、単位は「V」です。 設定範囲は0.00Vから電圧仕様のフルスケールま でです。ロータリノブを回して設定します。

停止放電時間 STOP「TIME.S」の設定で、LCD 内 の中央5桁のディスプレイに「TIME.S」、右側5桁の ディスプレイに設定値を表示し、単位は「s」です。設 定範囲は、OFF~99999 で間隔は1です。ロータリノ ブを回して設定します。

停止放電電流 STOP「CAP.AH」の設定で、LCD 内 の中央 5 桁のディスプレイに「CAP.AH」、右側 5 桁 のディスプレイに設定値を表示し、単位は「Ah」で す。設定範囲は、OFF~19999.9 で間隔は 0.1 で す。ロータリノブを回して設定します。

停止放電容量 STOP「CAP.WH」の設定で、LCD 内 の中央5桁のディスプレイに「CAP.WH」、右側5桁 のディスプレイに設定値を表示し、単位は「Wh」で す。設定範囲は OFF~19999.9 で間隔は 0.1 です。 ロータリノブを回して設定します。

	[®] STOP СЯР,ИН	OFF → STOP
サージ電流テスト の設定		SURGE SANGTAR
		SURGE 設定の順序を以下に示します。 SURGE テスト機能には、「SUR.I」、「NOR.I」、 「TIME」、「STEP」の 4 つのパラメータがあります。 ・ Setting キーを押して、サージ電流試験負荷電 流値「SUR.I」を設定します。 ・ もう一度設定キーを押して、通常の電流テストの 負荷電流値「NOR.I」を設定します。 ・ もう一度設定キーを押して、サージ電流試験時 間「TIME」を設定します。 ・ もう一度設定キーを押して、サージ電流テスト減 少ステップ電流設定値「STEP」が設定されま す。

設定処理中の OCP/OPP/DISch/SURGE の場合、 Exit キーを押すと設定項目を終了します。

Start/Stop キーは、SHORT、OCP、または OPP テ スト機能と組み合わせて使用します。設定したパラ メータに従ってテストを開始したり、PASS または FAIL が通知される前にテストを停止したりするため に使用します。SHORT、OCP、および OPP テスト の詳細については、前のセクションを参照してくださ い。

2-3. System キーの説明

Local +	Local	Local キーを押して、リモートモードを終了します。
システムパラメー タの設定		GP-IB アドレス、RS-232C ボーレート、ウェイクアッ プ、ブザーのオン/オフを設定します。
GP-IB アドレスの 設定	System	最初に System キーを押すと、LCD 左側 5 桁のディ スプレイに GPIB が表示され、中央5 桁のディスプレ イにアドレス、右側 5 桁のディスプレイに代表 GP-IB アドレスを上下キーで 1~30 で設定します。 Enter キ ーを押すと、LSP シリーズの GP-IB アドレス値が保 存されます。 System キーを 4 回押して、GP-IB アド レス構成状態を終了します。
	GPI6 Addr	I → GPI6 Addr 30
RS-232C ボーレ ートの設定	System ×2	System キーを最初から2回押すと、LCD 左側5桁 LCD に RS232、中央5桁ディスプレイに BAUD、右 側5桁ディスプレイに設定値が表示されます。上、 下キーを押してボーレートの値を調整します。次に Enter キーを押すと、LSP シリーズはボーレートの 設定を保存し、System キーを3回押すと、ボーレー ト設定状態を終了します。
		RS232 6AUd <u>9.</u> 6K
		RS232 6AUd 1928
		ВАЦА ЭВ.ЧК ФАЦА ЭВ.ЧК
		RS232 6AUd LIS2K

ウェイクアップ機能	System ×3	この機能は、LSPシ 合に、負荷状態と負 設計されています。 すと、LCD 左側 5 林 5 桁のディスプレイI に設定を表示し、上 Enter キーを押して て WAKE-UP 設定 ると呼び出しを行わ	バリーズを毎回電 荷レベルを自動 System キーを 行のディスプレイ に UP、右側 5 桁 下キーで 0~150 保存し、System 状態を終了します ないことを意味し	源オンにする場 設定するように 見初から3回押 にWAKE、中央 のディスプレイ を設定します。 キーを2回押し よ。"0"に設定す よす。
	UP UP	0	WAKE UP	150
ブザーのオン・オフ	System ×4	自動テスト(AUTO) 機能を使用するかと すると、自動テスト約 1回鳴り、FAILの切 設定方法: 最初から4回 Syste 桁のディスプレイに に BEEP、右側5桁 たはオフが表示され	SEQUENCE)設 ごうかを設定しま 結果が PASS の: 易合はブザーが 2 em キーを押すと SEQ、中央 5 桁 行のディスプレイ(います。上下キー	定時にブザー す。ON に設定 場合はブザーが 2 回鳴ります。 、LCD の左側 5 のディスプレイ の設定値設定し
	* 5E9. 6EEP		■ 5E9. 6EEP	OFF
注意	入力の確認が ENTER キーを 更を保存します PASS:自動テ FAIL:自動テン	必要な場合のシステ を使用します。そうしな さん。 ・ストモードで、NG 状 ストモードで、何かテン	ムパラメータを計 はいと、LSPシリー 態なし、PASS て ストが NG なら F	8定は KEYPAD ーズは設定の変 ごす。 AIL です。
マスター・スレーブ	System ×5	マスター・スレーブョ とができます。詳細 明」を参照してくださ	並列機能により、 は、「3-3.マスター い。	容量を増やすこ ー・スレーブの説
Recall/Store +-	Store Recall	負荷状態の設定を します。	Recall (呼び出し	.)/Store(保存)
		LSP シリーズ本体の ーは、高いテストス, ています。LSP シリ れぞれ 150 の動作	の前面パネルのこ ループットを目的 ーズの EEPROI 状態またはテス	ファンクションキ として設計され M メモリにはそ トステップを保存

		でき、各状態は電子負荷の負荷状態とレベルを同時に保存または呼び出すことができます。
Store の手順	Store	負荷状態と負荷レベルを設定します。
	Recall	Shift キーを押し、次に Store キーを押して保存状態 に入ります。
		上下キー、またはキーパッドを押して設定し、 ENTER OKを押して状態を保存します。
Recall 操作	Store	RECALL を押して呼び出し状態に入ります。
	Recall	上下キー、またはキーパッドを押して設定します。
	Recail	最後に、Enterキーを押して確認します。電子負荷 の前面パネルで、再設定に従って情報を呼び出す 値を設定します。
AUTO SEQUENCE の説		LSP シリーズは AUTO SEQUENCE 機能を備え、
明		ます。各グループは16ステップ設定ができ、
		STATE の 150 グループから選択できます。各ステ
		ップ内を TEST TIME 単位 100ms で範囲(0.1s~ 9 9s)の設定ができます。
Edit モード		Shift キーを押し、SEQ(Mode)を押します。AUTO
	Shift	SEQUENCE モードに入り、上下キーを押して EDIT
	SEO	を選択すると、LCDの左側5桁ディスプレイにEDIT が表示されます。中央5桁のLCDにFX「FX」は
	Mada	F1~F9の状態を選択することを意味します。キーパ
	wode	ッドを押して選択します。キー1~9 で F1~F9 を選択 します。
	EdIT	seo Edit T seo
	EL	0.0*
		Enter キーを押すと、LCD の左側 5 桁のディスプレ
		イに FX-XX、中央 5 桁のディスプレイに状態、右側 5 桁のディスプレイに設定 1~150 が表示されます
		「FX」は状態 F1~F9を選択することを意味します。
		「XX」は、テスト STEP 01-16 を意味し、状態値を設
		定します。エトキーまたはキーハットを押して設定します。
	F I-0 I	seoi F-I-O I ^{seoi}
	STATE	I STATE ISO
テスト時間の設定		Enterを押してTIME 値を設定します。上下キー、またはキーパッドを押して記字します。第四は
		バーム

を押して編集を終了すると、繰り返し数の設定になります。設定を保存しない場合は、Exitキーを押して 編集モードを終了します。

 Shift キーを押してから SEQ を押して AUTO SEQUENCE モードに入り、上下キーを押して TESTを選択すると、LCD の左側 5 桁ディスプレ イに TEST、中央 5 桁のディスプレイ FX が表示 されます。「FX」は F1~F9 までのグループを選択 することを意味します。キーパッドを押して選択し ます。キー1~9 で F1~F9 を選択できます。Enter キーを押すと、次の自動テストモードになります。

- テスト中は STEP のテストに代わって「SXX」、 「XX」を表示します。テスト結果が NG の場合、ディスプレイには「NG」(点滅)が表示され、テストが一時停止されます。このときユーザーは、 Enter キーを押してテスト続行するか、または Exit キーを押してテストモードを終了できます。テストモードは、(STEP01-TIME)から (SETP02-TIME)まで、すべての手順が完了するか、または EXIT を押して終了できます。
- すべてのテストステップが GO の場合、テスト結 果は PASS であり、LCD には「PASS」と表示さ れます。テストステップのいずれかが NG の場 合、テスト結果は FAIL であり、LCD には「FAIL」 と表示されます。ブザーが設定されている場合、 ON にすると、自動テスト結果が PASS の場合、 ブザーは 1 回ビープ音を鳴らし、テスト結果が FAIL の場合、ブザーは 2 回ビープ音を鳴らしま す。

テストが完了したら、ユーザーはもう一度 Enter キー を押してテストするか、Exit キーを押してテストモー ドを終了できます。

 16 ステップテストの編集が完了し、Test キーを 押すと、S01~S16 テストの順番に従って実行し、 終了後ディスプレイに PASS を表示します。

例

2-4. ENTRY キーの説明

ロータリノブ、矢印 キー ロータリノブと矢印キーは、設定値を増減するため に使用します。

ロータリノブを時計回りに回すか、上矢印キーを押し て設定値を上げます。

CR モードでは、上矢印キーや、ロータリノブを時計回りに回すことにより、抵抗が減少します。

CR モードでは、下矢印キーや、ロータリノブを反時計回りに回すことにより、抵抗が増加します。

第3章. 接続

3-1. 背面パネル

- DC入力端子 正(LOAD+)および負(LOAD-)の電源入力端子は明確にマークされています。小さい SENSE 端子と混同しないでください。 DUT の電圧および電流定格が、使用されているLSPシリーズロードモジュールの最大定格を超えないようにしてください。接続とテストの前に、DUT の出力極性も確認してください。 正の出力電源をテストする場合は、負の負荷端子をアースに接続する必要があります。これは通常、電源の負の出力が接地されている場合に達成されます。 同様に、負の出力の電源をテストする場合は、正の負荷端子を接地する必要があります。これは通常、テスト対象の電源の正の出力が接地されている場合に達成されます。
 V-sense 入力 V-sense 端子は、電源とLSPシリーズの間の負荷線の電圧降
 - 端子 下を補償するために使用できます。これは、負荷電流が比較的 大きい場合に役立つ便利な機能です。

リモートセンスが必要な場合は、下の図に示すように、V-sense 端子を電源の適切な正および負の端子に接続します。Config メニューで、V-sense 機能を AUTO または ON に設定できま す。

V-sense が AUTO に設定され、センスリードが DUT に接続さ れている場合、ディスプレイが電圧損失を補償する前に、損失 が約 700mV である必要があることに注意してください。 V-sense が「ON」に設定され、センス端子が DUT に接続されて いる場合、負荷はすべての電圧降下をチェックして補正します。 最大電圧検出補償は、LSP シリーズの定格と同じです。たとえ ば、LSP602-122 は、最大 1200Vdc で電流をシンクすることが できます。したがって、最大 V-sense も 1200Vdc です。

LSP シリーズの一般的な接続

 I-monitor
 I-monitor は BNC ソケットとして提供されます。これは、ユーザ ーが電子負荷の入力電流または短絡電流を監視できるように 設計されています。I-monitorの信号は 0V から 10V です。この 信号は、それぞれの機種が可能なフルスケール電流に比例し ます。

> LSP123-601: Imax=840AでI-monitor=10Vなので、84Aで1V になります。

電流モニターの等価回路

4. アナログプログ ラム入力 (ANALOG INPUT)

例

電子負荷には、本体の背面パネルにアナログプログラミング入 カがあります。アナログプログラミング入力により、本器は外部 0-10V(ac または ac+dc)信号に従って追跡およびロードできま す。

アナログプログラミング入力は、本体の背面パネルのBNCソケットとして構成されています。

アナログプログラミング入力は、CCモードまたはCPモードでの み動作します。LSP シリーズは、信号と負荷モジュールの最大 電流または電力範囲に応じて比例して負荷をかけようとしま す。

例:LSP123-601:Imax=840A および Pmax=12000W

したがって、CC モード(Range II)の場合は、アナログプログラ ミング入力が 5V で 420A の負荷設定、CP モード(Range II)の 場合は、アナログプログラミング入力が 1V で 1200W の負荷設 定となります。

アナログプログラミング信号は、単独で動作することも、フロント パネルまたはオプションのコンピュータインタフェース(GP-IB、 RS-232C、USB、またはLAN)またはフロントパネルを介して設 定されたプログラム値と合計することもできます。

例

下の図は、LSP123-601 の CC モードで 336A プログラム設定 と合計されたときの AC4Vpp、500Hz でのアナログプログラミン グ信号の結果を示しています。

- 5. AC 電源入力端子
- 6. 通信インタフェース用スロット(GP-IB、RS-232C、USB、LAN)
- マスター・スレ マスター:上側または下側を次のユニットに接続します。
 ーブ制御コネク スレーブ:上側は前のユニットに接続し、下側は次のユニットに タ(2 段)
 接続します。

3-2. I-monitor の接続

この製品をオシロスコープに接続するときは、下の図に示すように、接続プローブの極 性が正しいことを確認してください。

3-3. マスター・スレーブの説明

LSP シリーズの「MASTER/SLAVE」並列機能は、1 台の Master と 最大 7 台の SLAVE をつなぐことができます。設定方法は、System キーを押して CONTROL MODE を設定し、ALONE、MASTER、 SLAVE1~7を選択します。電源を落としても設定は失われることは なく、このパラメータは保存されます。マスターはスレーブ機がある かどうかを自動的に検出します。スレーブ機がない場合は 「ALONE モード」を実行し、スレーブ機が「MASTER モード」を実行 する場合は実行します。マスター機の電流と電力計の測定は、合 計電流と合計電力(マスター+スレーブ)を表示します。電圧計はマ スター機によって表示され、スレーブ機の電圧計は「SL1」~「SL7」 を表示します。

注意

- マスター/スレーブ操作を並行して実行することは、異なるモデ ルでは実行できません。
- マスター/スレーブを並行して操作する場合、左右のキーは無効になります。
- マスター/スレーブ動作並列、リミットが OPL または OCL 機能に 設定されている場合、スレーブは設定値を表示しません。

マスター/スレーブ機の電源を投入する前に、次の手順に従う必要 があります。

ステップ 1:スレーブの電源スイッチをオン(I)にします。 ステップ 2:マスターの電源スイッチをオン(I)にします。 電源を切る前に、次の手順に従ってください。 マスター/スレーブ機: ステップ 1:マスターの電源スイッチをオフ(O)にします。 ステップ 2:スレーブの電源スイッチをオフ(O)にします。

並列方法	HD-DSUB 15pin ブ機の背面パネル コネクタと下部コオ	1:1 ケーブルを使用して、マスターおよびスレー レの HD-DSUB 15pin コネクタを接続します(上部 <クタを接続します)。
注意	VGA ケーブルは、 め、使用しないでく	. 内部ピン 4~8、11 およびシャーシが短絡のた ください。
	<u></u>	MASTER / SLAVE CONTROL
	0	
	_	•
配線の要件	マスター/スレーブ	機は、次のように配線する必要があります。
	Vsense conr	Vsense is not connected
		страна сущита оста о
		3000 b.r. 3000 b.r.
	T <u>r</u>	0+ • • • • • • • • • • • • • • • • • • •
		3000 b/r 0+
手動操作	(LSP123-601 マン 設定・	スター/スレーブモデルは以下の例です)PRESET
	図のような CC/CF	R/CV/CP モード、CC 設定 64A=マスター32A+ス
	レーブ 32A、CR:	12500Ω=マスター//スレーブ= 6250Ω//6250Ω、
	500W+スレーブ 5	500W。
CC 100A 設定	マスター表示	
		0.000, 64,000 *
	スレーブ表示	
		<u> </u>
CR 12500Ω 設定	マスター表示	
		0.000, 12500 <u>,</u>
	スレーブ表示	
		0000, 62500 .

CP 1000W 設定	マスター表示	CP	5.000v 0.000∧	
	スレーブ表示	62	SL I 0 <u>000</u> ₄	ISTATIG ^{eorg} eneration SOO <u>,</u> O w
CV 100V 設定	マスター表示	CVI	5000v 0000∧	57ATG ⁻¹ 68855 ⁴⁴⁴⁴
	スレーブ表示	GVI	SL I 0.000	

注意 🖍

CC/CR/CV/CPモード以外のマスターモード動作では、以下の機能は無効になります。

- · Config 機能の BATT タイプ 1~N は無効。
- · Config 機能の MPPT は無効。
- ・ CC+CV、CP+CV は無効。
- ・ Recall/Store は無効。
- 自動シーケンスは無効。
- ・ SHORT、OCP、OPP 機能は無効。
- ・ 外部 I/O は無効

第4章. 設置

4-1. 雷源ラインのチェック

LSP シリーズは、背面パネルのラベルに示されているように、 概要 100Vac~240Vac入力で動作できます。工場のチェックマークが公 称ライン電圧に対応していることを確認します。ラベルが正しくマー クされている場合は、この手順をスキップします。

- インストール 1. LSP シリーズの電源を OFF にして、電源コードを抜いてくださ い。
 - 2. 下記の LSP シリーズの背面パネルの図を参照してください。

LSP シリーズの AC 入力接続

LINE INPUT

4-2. 接地要件

- インストール 1. 漏雷時の危険を回避するため、完全で適切な接地が必要で す。
 - 2. LSP シリーズには、機器のカバーを接地するための適切なレセ プタクルに差し込む3本の導体ケーブルが装備されています。

4-3. 電源の投入

手順

1 電源スイッチをオフ(O)にします。

- 2. 電源コードが修正されていることを確認してください。
- 3. 背面パネルの DC 入力端子に何も接続されていないことを確認 してください。
- 4. 電源スイッチをオンにします。

製品の損傷を避けるために、負荷入力端子に電圧を印可した状態 で、電源スイッチのオンおよびオフ操作はしないでください。

注音
4-4. 負荷入力端子への接続

手順

1. 電源スイッチをオフにします。

- 2. DUT の出力がオフになっていることを確認してください。
- 3. 負荷線を背面パネルの負荷入力端子に接続します。
- 接続の極性を確認し、負荷線を DUT の出力端子に接続します。

注意

機器の損傷を避けるために、DC 負荷入力端子に DC 電圧標準器 の出力を入力しないでください。電圧計の校正が必要な場合は、 Vsense 入力に校正電圧出力を入力してください。

4-5. RS-232C インタフェースオプション

 PEL-023
 次の図は、背面パネルのRS-232Cコネクタ(メス)を示しています。

 RS-232Cインタフ
 本器をコンピュータのRS-232Cポートに1対1で接続します。

 ェース
 RS-232Cボーレートはフロントパネルで設定でき、Systemキーを 押すとGP-IBアドレスが表示されます。もう一度押すと、ボーレート が点灯しますので速度を指定してENTERで確定してください。

4-6. GP-IB インタフェースオプション

PEL-022 コントローラを含むデバイスの最大数は 15 以下です。

GP-IB インタフェー すべてのケーブルの最大長は、相互に接続されているデバイスの ス 数の 2m 倍以下で、最大 20m です。

System キーを押すとGP-IB アドレスが表示されますので GP-IB アドレスを指定して ENTER で確定してください。

4-7. USB インタフェースオプション

PEL-025 下の図は、LSP シリーズ本体の背面パネルにある USB コネクタを USB インタフェー 示しています。 ス

USB 設定の詳細については、「7-4.USB の設定」を参照してください。

4-8. LAN インタフェースオプション

PEL-024 次の図は、LSP シリーズ本体の背面パネルにある LAN コネクタを LAN インタフェー 示しています。

LAN 設定の詳細については、「7-5. LAN の設定」を参照してください。

4-9. I/O 接続

Vsense、アナログプログラミング入力、Imonitor を備えた LSP シリ ーズ I/O インタフェースです。

負荷電流レベル変更時、電源投入時の ON/OFF 切り替え時の負 荷電流スルーレートはどのくらいですか? LSP シリーズは、制御 可能な状態で上記のすべての負荷電流スルーレートを提供しま す。立ち上がりおよび立ち下がり電流スルーレートは、フロントパネ ルの操作またはリモートプログラミングとは独立して設定できます。 スルーレートは、電流が新しいプログラム値に変化する速度を決定 します。スルーレートは、LSP シリーズのフロントパネルまたはリア パネルの GP-IB を介して設定できます。

立ち上がりスルーレートと立ち下がりスルーレートは、840Aの電流 範囲で384mA/µsから24A/µs(LSP123-601の場合)まで、84A の電流範囲で38.4mA/µsから2.4A/µsまで個別にプログラムでき ます。これにより、低負荷電流レベルから高負荷電流レベル(立ち 上がり電流スルーレート)または高負荷電流レベルから低負荷電 流レベル(立ち下がり電流スルーレート)への独立した制御遷移が 可能になり、誘導配線での誘導電圧降下を最小限に抑えることが できます。推定デバイスに誘導される過渡現象を制御します(電源 過渡応答テスト)。

この制御可能な負荷電流スルーレート機能は、過負荷電流現象を 排除し、テスト対象の電源をオンにしたときの実際の負荷電流スル ーレートをエミュレートすることもできます。負荷電流のスルーレート は、電源の出力電圧、負荷レベルの設定、および負荷のオン/オフ スイッチによって決まります。したがって、定電流モードのみを使用 して電源テストタスクのすべての項目を実行できます。これにより、 テストの品質とプロセス、および効率を大幅に向上させることができ ます。

負荷電流レベル変更時、電源投入時の ON/OFF 切り替え時の負荷電流スルーレートはどのくらいですか?

LSPシリーズ電子負荷は、制御可能な状態で上記のすべての負荷 電流スルーレートを提供します。立ち上がりおよび立ち下がり電流 スルーレートは、フロントパネルの操作またはリモートプログラミン グとは独立して設定できます。

スルーレートは、電流が新しいプログラム値に変化する速度を決定 します。

スルーレートは、LSP シリーズ高電力負荷のフロントパネルまたは リアパネルの GP-IB を介して設定できます。

立ち上がりスルーレートと立ち下がりスルーレートは、840Aの電流 範囲で384mA/µsから24A/µs(LSP123-601)まで、84Aの電流範 囲で38.4mA/µsから2.4A/µsまで個別にプログラムできます。 これにより、低負荷電流レベルから高負荷電流レベル(立ち上がり 電流スルーレート)または高負荷電流レベルから低負荷電流レベ ル(立ち下がり電流スルーレート)への独立した制御遷移が可能に なり、誘導配線での誘導電圧降下を最小限に抑えることができま す。推定デバイスに誘導される過渡現象を制御します(電源過渡応 答テスト)。

この制御可能な負荷電流スルーレート機能は、過負荷電流現象を 排除し、テスト対象の電源をオンにしたときの実際の負荷電流スル ーレートをエミュレートすることもできます。

負荷電流のスルーレートは、電源の出力電圧、負荷レベルの設 定、および負荷のオン/オフスイッチによって決まります。 したがって、定電流モードのみを使用して電源テストタスクのすべて の項目を実行できます。これにより、テストの品質とプロセス、およ

LSP シリーズには 2 つの負荷電流範囲、Range I と Range II があ り、Range I、Range II、RISE/FALL スルーレートのスルーレートは 段階的な仕様でリストされています。

び効率を大幅に向上させることができます。

4-11. 負荷線のインダクタンス

負荷配線にはインダクタンス(L)があります。電流(I)が短時間で変 化すると、配線ケーブルの両端に大きな電圧が発生します。この電 圧は、EUT のインピーダンスが比較的小さい場合、LSP シリーズ のすべての負荷入力端子に適用されます。負荷線のインダクタン ス(L)と電流の変化(I)によって発生する電圧は、次の式で表され ます。

 $E=L \times (\Delta I / \Delta T)$

E:負荷線のインダクタンスによって生成される電圧

L:負荷線のインダクタンス

∆I:電流変動量

△T:電流の変動周期

ー般に、ワイヤーのインダクタンスは 1m あたり約 1µH です。EUT と電子負荷(LSP シリーズ)の間に 10m の負荷線を 2A/µs の電流 変動で接続すると、線のインダクタンスによって発生する電圧は 20V になります。

負荷入力端子の負極は外部制御信号の基準電位であるため、外 部制御端子に接続されている機器が誤動作する可能性がありま す。

定電圧(CV)モード、定抵抗(CR)モード、定電力(CP)で動作する 場合、負荷電流は負荷入力端子の電圧によって変化するため、発 生電圧の影響を受けやすくなります。

EUT への配線は撚って、できるだけ短くする必要があります。 負荷線が長い場合やループが大きい場合は、線のインダクタンス が大きくなります。その結果、スイッチングが発生したときに生じる 電流変動により、大きな電圧降下が発生します。

最小動作電圧以下の瞬時電圧降下の値が負荷入力端子で発生す る電圧に依存する場合、回復の応答が大幅に遅れます。 このような場合、電子負荷により不安定な発振が発生する場合が あります。このような状態では、入力電圧が最大入力電圧を超え、 LSP シリーズに損傷を与える可能性があります。

問題を防ぐために、LSPシリーズとDUTを可能な限り最短のツイス トワイヤを使用して接続し、インダクタンスによって発生する電圧を 最小動作電圧と最大入力電圧範囲の間に保つか、低いスルーレ ートを設定します。高速応答動作が不要な場合は、スルーレートの 設定を下げてください。 このような設定をすると、DI/DT の値が減少するため、負荷配線の インダクタンスを減少させることができなくても、生成される電圧が 減少します。

DC動作の場合も、電流の位相遅延により、LSPシリーズの制御が 不安定になり、発振が発生する場合があります。この場合も、LSP シリーズとDUTを最短の撚り線で接続してください。

DC 動作のみが必要な場合は、下図に示すように負荷入力端子に コンデンサを接続して発振を緩和することができます。この場合、 許容リップル電流の範囲内でコンデンサを使用してください。

第5章. リモートコントロール

5-1. インタフェース構成

LSP シリーズ本体の背面パネルのリモートコントロールインタフェースは、PC または PLC と接続して操作ができます。

この機能は、スイッチング電源の自動負荷/相互負荷調整およびセンタリング電圧テスト、 または充電式バッテリーの充電/放電特性テストとして使用できます。背面パネルの通信 インタフェースプログラミングの機能は、負荷レベルと負荷状態が設定できるだけでなく、 負荷電圧と負荷電流を読むこともできます。

注意 LSP シリーズは USB/LAN インタフェースを使用して LSP シリーズを制御する場合、 LSP シリーズは USB/LAN インタフェースを内部で RS-232C インタ フェースに変換します。

5-1-1. RS-232C の構成

以下の RS-232C コマンドは GP-IB コマンドと同じです。LSP シリーズ本体の RS-232C 仕様は以下のとおりです。

RS-232C の構成	ボーレート	9600~115200bps
	ストップビット	1bit
	データビット	8bit
	パリティ	なし
	ハンドシェイク コネクタ	ハードウェア(RTS/CTS) D-sub9 ピン メス DCE タイプ
LSP シリーズ背面 パネルの RS-232C インタフ ェースコネクタ	PC Ø RS-232C # 	RS LSP Ø RS-232C 32 ポート RxD CTS RTS
LSP 本体の内部		PC を接続する場合のケ
(DCE 機器)	2 3 RXD 8 RTS 7 CTS 4 DSR 5 GND 1 0 DCD DTR	ーブルは RS-232C ストレ ート結線、D-sub9 オス -D-sub9 メスとなっている ケーブルを使用します。 このケーブルは一般的に 延長ケーブルとして販売さ れています。

ピン番号	略称	説明
ピン1	CD	キャリア検出
ピン2	RXD	受信データ
ピン3	TXD	送信データ
ピン4	DTR	データ端末レディ
ピン5	GND	グランド
ピン6	DSR	データセットレディ
ピン7	RTS	送信要求
ピン8	CTS	送信可
ピン9	RI	被呼表示

RS-232C の通信設定

SYSTEM キーを数回押すと左上に「RS232」が表示されます、右上 に「baud」が表示され、右下にボーレートが表示されます。上下矢印 キーを押してボーレートの値を選択し、ENTER を押し確定します

5-1-2. GP-IB の構成

GP-IB のコマンドは SCPI 準拠となります。LSP シリーズの GP-IB 仕様は以下のとおりです。

GP-IB の構成 規格 IEEE488-1978 準拠 アドレス範囲 1~30

GP-IB の通信設定

SYSTEM キーを数回押すと左上に「GPIB」が表示されます、右上に「baud」が表示され、右下に GP-IB アドレスが表示されます。上下矢 印キーを押して値を選択し、ENTER を押し確定します。

5-1-3. USB の構成

USB のコマンドは SCPI 準拠となります。LSP シリーズの USB 仕様は以下のとおりです。

USBの構成 規格 USB 2.0 FullSpeed Prolific PL2303 による RS-232C 変換

USB の通信設定

LSP 本体には設定項目がありません。

PC と説即する場合は USB ドライバのインストールが必要です。 「7-4.USB の設定」を参照してください。

5-1-4. LAN の構成

LAN のコマンドは SCPI 準拠となります。LSP シリーズの ALN 仕様は以下のとおりです。

LAN の構成 規格 100Base-TX ,IPv4 Soket 通信 ,HTTP 通信(通信設定のみ) LAN の通信設定

LAN の設定は専用アプリケーションによる機器検索とブラウザによる 設定更新で行います。詳細は「7-5.LAN の設定」を参照してください。

5-2. 通信インタフェースのプログラミングコマンドリスト

5-2-1. コマンド一覧

5-2-1-1. プリセットコマンド	
表:プリセットコマンドの概要	
設定コマンドの概要	備考
[PRESet:]RISE <nr2></nr2>	A/µs
[PRESet:]FALL <nr2></nr2>	A/µs
[PRESet:]{PERI PERD}:{HIGH LOW} <nr2></nr2>	
[PRESet:]LDONv <nr2></nr2>	
[PRESet:]LDOFfv <nr2></nr2>	
[PRESet:]CC CURR:{HIGH LOW} <nr2></nr2>	
[PRESet:]CP:{HIGH LOW} <nr2></nr2>	
[PRESet:]CR RES:{HIGH LOW} <nr2></nr2>	
[PRESet:]CV VOLT:{HIGH LOW} <nr2></nr2>	
[PRESet:]OCP:START <nr2></nr2>	
[PRESet:]OCP:STEP <nr2></nr2>	
[PRESet:]OCP:STOP <nr2></nr2>	
OCP?	
[PRESet:]VTH <nr2></nr2>	
[PRESet:]OPP:START <nr2></nr2>	
[PRESet:]OPP:STEP <nr2></nr2>	
[PRESet:]OPP:STOP <nr2></nr2>	
OPP?	
[PRESet:]TCONFIG {NORMAL OCP OPP SHORT}	
[PRESet:]STIME <nr2></nr2>	
[PRESet:]MPPT {ON OFF}	
[PRESet:]MPPTIME n	MPPT 記録時間の設定
	n=1000~60000 ms
[PRESet:]BATT:UVP <nr2></nr2>	単位: V
[PRESet:]BATT:TIME {n}	0~99999 ,0=OFF
[PRESet:]BATT:STEP {n}	サイクルライフテスト:
- · · · · · · · · · · · · · · · · · · ·	n=1~3,TYPE5:n=1~9
[PRESet:]BATT:CCH{n} <nr2></nr2>	サイクルライフテスト: CC:HIGH level, n=1~3

[PRESet:]BATT:CCL{n} <NR2>

[PRESet:]BATT:TH{n} <NR2>

[PRESet:]BATT:TL{n} <NR2>

[PRESet:]BATT:CYCLE{n} <NR2>

[PRESet:]BATT:CC{n} <NR2> [PRESet:]BATT:DTIME{n} <NR2>

[PRESet:]BATT:REPEAT {n}

[PRESet:]SURGE:SURI<NR2> [PRESet:]SURGE:NORI<NR2> [PRESet:]SURGE:TIME<NR2>

[PRESet:]SURGE:STEP {n} [PRESet:]SURGE{ON|OFF}

[PRESet:]CPRSP {n} [PRESet:]AVG {n}

5-2-1-2. リミットコマンド

表:リミットコマンドの概要 リミットコマンド [LIMit:]CURRent:{HIGH|LOW} <NR2> {IH|IL} <NR2> [LIMit:]POWer:{HIGH|LOW} <NR2> {WH|WL} <NR2> [LIMit:]VOLTage:{HIGH|LOW} <NR2> {VH|VL} <NR2> {VH|VL} <NR2> [LIMit:]ADDCV:VOLT <NR2> [LIMit:]ADDCV {ON|OFF} サイクルライフテスト: CC:LOW level, n=1~3 サイクルライフテスト: Thigh(unit: ms), n=1~3 サイクルライフテスト: Tlow (unit: ms), n=1~3 サイクルライフテスト: 1~2000, n=1~3 Ramp 電流, n=1~9 Ramp デルタ時間 (T1~T9: 0~6000sec), n=1~9 サイクルライフテスト / Ramp Repeat 繰り返し 時間: 0~9999

SURGE 時間: 10~1000ms n=1~5 ON: SURGE の実行, OFF: 停止

応答

5-2-1-3. ステータスコマンド

表:ステータスコマンドの概要	
ステータスコマンド	備考
[STATe:]LOAD {ON OFF}	
[STATe:]MODE {CC CR CV CP}	
[STATe:]SHORt {ON OFF}	
[STATe:]PRESet {ON OFF}	
[STATe:]SENSe {ON OFF AUTO}	
[STATe:]LEVel {HIGH LOW}	
[STATe:]DYNamic {ON OFF}	
[STATe:]CLR	
[STATe:]NG?	
[STATe:]PROTect?	
[STATe:]CCR{SP}{AUTO R2}	
[STATe:]NGENABLE {ON OFF}	
[STATe:]POLAR {POS NEG}	
[STATe:]START	
[STATe:]STOP	
5-2-1-4. システムコマンド	

表:システムコマンドの概要		
システムコマンド	注	応答
[SYStem:]RECall {m}	m=1~150	
[SYStem:]STORe {m}	m=1~150	
[SYStem:]NAME?		"XXXXX"
[SYStem:]REMOTE	RS-232C/USB/LAN	
[SYStem:]LOCAL	RS-232C/USB/LAN	

5-2-1-5. 計測コマンド

表∶計測クエリコマンドの概要	
計測クエリコマンド	応答
MEASure:CURRent?	###.####
MEASure:VOLTage?	###.####
MEASure:POWer?	###.####

- 備考
- 1. 電流の単位:A
 - 2. 電圧の単位:V
 - 3. 抵抗の単位:Ω
 - 4. 時間の単位:ms
 - 5. スルーレートの単位: A/µs
 - 6. 電力の単位:W

5-2-1-6. オートシーケンスコマンド

表:オートシーケンスコマンドの概要

オートシーケンスコマンド	注	応答
FILE {n}	n=1~9	
STEP {n}	n=1~32	
TOTSTEP {n}	Total step n=1~32	
SB {n}	m=1~150 m: 状態	
TIME <nr2></nr2>	100~9999(ms)	
SAVE	Save "File n" データ	
REPEAT {n}	n=0~9999	
RUN F{n}	n=1~9	自動返信 "PASS"または"FAIL:XX" (XX=NG ステップ)

5-3. コマンドの構文

5-3-1. 略語の説明

コマンドツリー SP: スペース、ASCIIコードは 16 進数の 20 です。

- ;: セミコロン、プログラム行のターミネータ、ASCII コードは 16 進数の 3B です。
- NL: 改行、プログラム行のターミネータ、ASCII コードは 16 進数の 0A です。
- <NR2>: 小数点付きの桁。###.#####の範囲と形式で受けつける ことができます。

例:30.12345,5.0

5-3-2. 通信インタフェースプログラミングコマンド

構文の説明

;

- { } こ号の内容は、コマンドの一部またはデータとして使用する必要があります。省略できません。
- [] []記号の内容は、コマンドを使用できるかどうかを示します。テストア プリケーションによって異なります。
- この記号はオプションを意味します。たとえば、「LOW|HIGH」は、コ マンドとしてLOWまたはHIGHのみを使用でき、設定コマンドとして1 つしか選択できないことを意味します。
- ターミネータ コマンドを送信した後、プログラムラインのターミネータ文字を送信す る必要があります。LSPシリーズ本体で使用できるコマンドターミネー タ文字を以下の表に示します。

LF
LFとEOI
CR, LF
CR, LF とEOI

セミコロン「;」はバックアップコマンドです。セミコロンを使用すると、コ マンドステートメントを1行に組み合わせてコマンドメッセージを作成 できます。

5-4. コマンドリスト

5-4-1. プリセットコマンド

1-1. [PRESet	:]RISE	$\underbrace{\text{Set}}_{\qquad} \rightarrow \underbrace{\text{Query}}$
説明	RISE (立ち上がり)スルーレートの設定と読み取 RISE スルーレートの定義は、負荷レベルの変 負荷を RISE でプログラムでき、FALLとは完全 最下位の桁は小数点以下 3 桁です。 LSP シリーズは、設定された RISE が負荷の ルの最大値に自動的に設定されます。 単位は「A/µs」です。	りをします。 ミ更か、ダイナミック 全に独立しています。 仕様を超えると、モデ
構文	[PRESet:]RISE <nr2></nr2>	
クエリ構文	[PRESet:]RISE?	
		Set)->
[PRESet:]F	ALL	
説明	FALL(立ち下がり)スルーレートの設定と読み取 FALLのスルーレートの定義は、負荷レベルの ク負荷を FALL でプログラムでき、RISE とは5 す。 LSP シリーズは、設定されている FALL が負有 モデルの最大値に自動的に設定されます。 単位は「A/µs」です。	りをします。)変更か、ダイナミッ 完全に独立していま 苛の仕様を超えると、
構文	[PRESet:]FALL <nr2></nr2>	
クエリ構文	[PRESet:]FALL?	
[PRESet:]{F	PERI PERD}:{HIGH LOW}	$\underbrace{\text{Set}}_{\text{Query}}$
説明	DYNAMIC 動作時の TLOW と THIGH 時間の言 す。 DYNAMIC 動作時の負荷波形の周期は、TLC て決まります。 最下位の桁は小数点以下 5 桁です。	受定と読み取りをしま DWとTHIGH によっ

LSP シリーズは、設定した値が負荷の最大値を超えると、TLOW

または THIGH の値を自動的に設定します。

単位は「ms」です。

構文 [PRESet:]{PERI|PERD}:{HIGH|LOW} <NR2>

クエリ構文 [PRESet:]{PERI|PERD}:{HIGH|LOW}?

Set)-→ Query

Set)-

Set → → Query

Query

•Query

[PRESet:]LDONv

説明	LSP が LOAD ON する入力電圧の設定と読み取りをします。設定した電圧以上になると LOAD ON します。
構文	[PRESet:]LDONv <nr2></nr2>
クエリ構文	[PRESet:]LDONv?

[PRESet:]LDOFfv

説明	- LSP が LOAD OFF する入力電圧の設定と読み取りをします。設定し た電圧以下になると LOAD OFF します。
構文	[PRESet:]LDOFfv <nr2></nr2>
クエリ構文	[PRESet:]LDOFfv?

[PRESet:]{CC|CURR}:{HIGH|LOW}

説明	電流値の Level の HIGH/LOW 設定と読み取りをします。 設定した値が本器の最大値を超えると、電流の最大値を自動的に 設定します。 LOW の値は HIGH より小さくする必要があります。 単位は「A」です。
構文	[PRESet:]{CC CURR}:{HIGH LOW} <nr2></nr2>
クエリ構文	[PRESet:]{CC CURR}:{HIGH LOW}?
	(Set)

[PRESet:]CP:{HIGH|LOW}

説明	電力値の Level の HIGH/LOW 設定と読み取りをします。このコマン ドは必要な電力値を設定するためのもので、単位は「W」です。
構文	[PRESet:]CP:{HIGH LOW} <nr2></nr2>
クエリ構文	[PRESet:]CP:{HIGH LOW}?

Set)-

[PRESet:]{CR|RES}:{HIGH|LOW}

Set)-

Set)-

Set

Query

Query

クエリ構文	[PRESet:]{CR RES}:{HIGH LOW}?
構文	[PRESet:]{CR RES}:{HIGH LOW} <nr2></nr2>
	単位は「Ω」です。
	LOW に設定されている抵抗値は HIGH より小さくする必要があり ます。
	最大値に設定されます。
	設定した抵抗値が本器の仕様を超えると、自動的にそのモデルの
	ドは、負荷抵抗の必要な値を設定するために使用されます。
説明	抵抗値の Level の HIGH/LOW 設定と読み取りをします。このコマン

[PRESet:]CV:{HIGH|LOW}

説明	電圧値の Level の HIGH/LOW 設定と読み取りをします。このコマン ドは、必要な負荷電圧を設定するために使用されます。 設定されている電圧の値が本器の仕様を超えると、モデルの最大 値に自動的に設定されます。 LOW に設定されている電圧値は HIGH より小さくする必要があり ます。 単位は電圧「V」です
構文	[PRESet:]CV:{HIGH LOW} <nr2></nr2>
クエリ構文	[PRESet:]CV:{HIGH LOW}?

[PRESet:]OCP:START

説明	OCP(過電流保護)テストの電流初期値の設定と読み取りをします。 このコマンドは、OCPの必要な初期値(I-START)を設定するために 使用されます。単位は「A」です。
構文	[PRESet:]OCP:START <nr2></nr2>
クエリ構文	[PRESet:]OCP:START?

[PRESet:]OCP:STEP

説明	OCP テストの電流増分値の設定と読み取りをします。このコマンド
	は、OCP テストの増分値(I-STEP)を設定するために使用されます。
	単位は「A」です。

構文	[PRESet:]OCP:STEP <nr2></nr2>		
クエリ構文	[PRESet:]OCP:STEP?		
		Set)	
[PRESet:]OCP:STOP			
説明	OCP テストの電流最大値の設定と読み取りをします は、OCP の最大値(I-STOP)を設定するために使用 は「A」です。	t。このコマンド 用されます。単位	
構文	[PRESet:]OCP:STOP <nr2></nr2>		
クエリ構文	[PRESet:]OCP:STOP?		
OCP			
説明	OCP テストの電流の読み取りをします。単位は「A」です。		
クエリ構文	OCP?		
		Set)	
[PRESet:]VTH	4		
説明	OCP/OPP テストのしきい値電圧の最大値の設定と す。これは、機器の出力電圧が VTH 以下の場合、- OCP/OPP ポイントになります。単位は「V」です。	∶読み取りをしま そこがその機器の	
構文	[PRESet:]VTH <nr2></nr2>		
クエリ構文	[PRESet:]VTH?		
		Set	
[PRESet:]OP	P:START		
説明	OPP (過電力保護)テストの電力初期値の設定と読 このコマンドは、OPP の必要な初期値(P-START) ⁾ 使用されます。単位は「W」です。	み取りをします。 を設定するために	
構文	[PRESet:]OPP:START <nr2></nr2>		
クエリ構文	[PRESet:]OPP:START?		
		Set)->	
[PRESet:]OPP:STEP -			
説明	OPP テストの電力増分値の設定と読み取りをします は、OPP テストの増加値(P-STEP)を設定するため す。単位は「W」です。	^ト 。このコマンド DIに使用されま	

構文	[PRESet:]OPP:STEP <nr2></nr2>

クエリ構文 [PRESet:]OPP:STEP?

 $\underbrace{\text{Set}}_{\text{Query}}$

Set)-

(

[PRESet:]OPP:STOP

説明	OPP テストの電力最大値の設定と読み取りをします。このコマンド は、OCP の最大値(P-STOP)を設定するために使用されます。
構文	[PRESet:]OPP:STOP{SP} <nr2>{; NL}</nr2>
クエリ構文	[PRESet:]OPP:STOEP?{; NL}

クエリ構文	OPP?
説明	OPP テストの電力を読みます。このコマンドは、OPP テストの OPP 電力の読み取るために使用されます。
OPP	

[PRESet:]TCONFIG

説明	テスト機能の設定と読み取りをします。このコマンドには4つのオプションがあります。それらは、NORMAL モード、OCP テスト、OPP テスト、および SHORT テストです。		
構文	[PRESet:]TONFIG {NORMAL OCP OPP SHORT}		
クエリ構文	[PRESet:]TONFIG?		
応答パラメータ	<nr2></nr2>		
	1	NORMAI	
	2	OCP	
	3	OPP	
	4	SHORT	

[PRESet:]STIME

Set)

説明	SHORT(短絡)テストの時間の設定と読み取りをします。このコマンド は、SHORTテストの時間を設定するために使用されます。時間を0 に設定すると、時間制限がなく、短絡が続くことを意味します。単位は ミリ秒「ms」です。
構文	[PRESet:]STIME <nr2></nr2>
クエリ構文	[PRESet:]STIME?

[PRESet:]MP	РТ	Set)->	
説明	MPPT(最大電力点追従)テストのオン/オフです。こ MPPT の ON/OFF 設定です。	このコマンドは	
構文	[PRESet:]MPPT ON OFF		
[PRESet:]MP	Р		
説明	MPP(最大電力点)の最大電力データ、「電圧計/電 読み取ります。	『流計/電力計」を	
クエリ構文	[PRESet:]MPP?		
[PRESet:]MP	PTIME	$\underbrace{\text{Set}}_{} \rightarrow \underbrace{\text{Query}}_{}$	
説明	MPPTIME(最大電力点追従時間)の設定と読み取りをします。この コマンドは、MPPTIME の最大電力点追従時間 n=1000ms~60000ms です。		
構文	[PRESet:]MPPTIME {n}		
クエリ構文	[PRESet:]MPPTIME?		
例	 MPPTIME を 5000ms に設定します(最大電 読み取り)。 	カ点、5秒に1回	
	2. MPPT ON コマンドを設定します。		
	 MPP? コマンドの設定で、リードバックは「電」 計」です。 	圧計/電流計/電力	
	4. MPP OFF コマンドを設定します。		

[PRESet:]BATT:UVP

(Set)→

説明	UVP(低電圧保護)の設定をします。このコマンドは、バッテリー放電 テストモードの TYPE 1 または 2 の UVP ポイントを設定するためのも のです。単位は電圧「V」です。
構文	[PRESet:]BATT:UVP <nr2></nr2>

[PRESet:]BA	T:TIME	Set)->
説明	バッテリー放電テストモード時間を設定しま	す。このコマンドは、バッ

テリー放電テストモードの TYPE 3、n=1~99999 の放電時間を設定 するためのものです。単位は秒「s」です。

構文

[PRESet:]BATT:TIME {n}

[PRESet:]BATT:STEP

構文	[PRESet:]BATT:STEP {n}
	バッテリー放電テストモードの TYPE 4 または 5 のテスト STEP を設 定するためのものです。TYPE 4 は n=1~3、TYPE 5 は n=1~9 に設 定できます。
説明	バッテリー放電テストモードのステップを設定します。このコマンドは、

[PRESet:]BATT:CCH

Set)

説明	バッテリー放電テストの TYPE 4 の high 電流を設定します。このコマ ンドは、バッテリー放電テストの TYPE 4 の high 電流値、n=1~3 を設 定するためのものです。電流値の単位は「A」です。
構文	[PRESet:]BATT:CCH{n} <nr2></nr2>

[PRESet:]BATT:CCL

(Set)→

[PRESet:]BATT:TH

説明 バッテリー放電テストの TYPE 4 の high テスト時間を設定します。こ のコマンドは、バッテリー放電テストの TYPE 4 の high テスト時間、 n=1~3を設定するためのもので、単位はミリ秒「ms」です。 構文 [PRESet:]BATT:TH{n} <NR2>

[PRESet:]BATT:TL

(Set)→

Set

構文	[PRESet:]BATT:TH{n} <nr2></nr2>
	コマントは、ハッテリー放電テストの「YPE 4 の low テスト時間、 n=1~3を設定するためのもので、単位はミリ秒「ms」です。
説明	バッテリー放電テストの TYPE 4の low テスト時間を設定します。この

[PRESet:]BA	TT:CYCLE	Set →
説明	バッテリー放電テストの TYPE 4 のテストサイクル(n=1~3、サイクル範囲は 1~2000 です。	の設定です。
構文	[PRESet:]BATT:CYCLE{n} <nr2></nr2>	
[PRESet:]BA	TT:CC	Set)->
説明	バッテリー放電テストの TYPE 5 の負荷電流を設ま 電流の単位は「A」です。	定します。 n=1~9、
構文	[PRESet:]BATT:CC{n} <nr2></nr2>	
[PRESet:]BA	TT:DTIME	<u>Set</u> →
説明	バッテリー放電テストの TYPE 5 の時間を設定しま 範囲は 1~6000s です。	す。n=1~9、時間
構文	[PRESet:]BATT:DTIME{n} {NR1}	
[PRESet:]BA	TT:REPEAT	(Set)→
[PRESet:]BA 説明	TT:REPEAT バッテリー放電テストの TYPE 5 の繰り返しテスト n=0~999999 です。	<u>Set</u> → 数を設定します。
[PRESet:]BA ⁻ 説明 構文	TT:REPEAT バッテリー放電テストの TYPE 5 の繰り返しテスト n=0~99999 です。 [PRESet:]BATT:REPEAT {n}	<u>Set</u> → 数を設定します。
[PRESet:]BA 説明 構文 [PRESet:]SU	TT:REPEAT バッテリー放電テストの TYPE 5 の繰り返しテスト n=0~99999 です。 [PRESet:]BATT:REPEAT {n} RGE:SURI	Set→ 数を設定します。
[PRESet:]BA 説明 構文 [PRESet:]SU 説明	TT:REPEAT バッテリー放電テストの TYPE 5 の繰り返しテスト n=0~99999 です。 [PRESet:]BATT:REPEAT {n} RGE:SURI サージ電流テストのサージ電流値の設定と読み取 マンドは、サージ電流テストのサージ電流値 XXX.3 CURRENT の設定および読み取りをするためのも	Set → 数を設定します。
[PRESet:]BA 説明 構文 [PRESet:]SU 説明 構文	TT:REPEAT バッテリー放電テストの TYPE 5 の繰り返しテスト n=0~99999 です。 [PRESet:]BATT:REPEAT {n} RGE:SURI サージ電流テストのサージ電流値の設定と読み取 マンドは、サージ電流テストのサージ電流値 XXX.: CURRENT の設定および読み取りをするためのも [PRESet:]SURGE:SURI <nr2></nr2>	Set → 数を設定します。
[PRESet:]BA 説明 構文 [PRESet:]SU 説明 構文 クエリ構文	TT:REPEAT バッテリー放電テストの TYPE 5 の繰り返しテスト n=0~99999 です。 [PRESet:]BATT:REPEAT {n} RGE:SURI サージ電流テストのサージ電流値の設定と読み取 マンドは、サージ電流テストのサージ電流値 XXX. CURRENT の設定および読み取りをするためのも [PRESet:]SURGE:SURI <nr2></nr2> [PRESet:]SURGE:SURI ?	Set → 数を設定します。 文Et → → Query りをします。このコ XXX(A)SURGE のです。
[PRESet:]BA 説明 構文 [PRESet:]SU 説明 構文 クエリ構文	TT:REPEAT バッテリー放電テストの TYPE 5 の繰り返しテスト n=0~99999 です。 [PRESet:]BATT:REPEAT {n} RGE:SURI サージ電流テストのサージ電流値の設定と読み取 マンドは、サージ電流テストのサージ電流値 XXX.: CURRENT の設定および読み取りをするためのも [PRESet:]SURGE:SURI <nr2> [PRESet:]SURGE:SURI <nr2> [PRESet:]SURGE:SURI?</nr2></nr2>	Set 数を設定します。 少をします。この⊐ XXX(A)SURGE のです。 Set →Query)

構文	[PRESet :]SURGE:NORI <nr2></nr2>
	CURRENT の設定および読み取りをするためのものです。
	ンドは、サージ電流テストの通常電流値 XXX.XXX(A)NORMAL
説明	サージ電流テストの通常電流値の設定と読み取りをします。このコマ

クエリ構文	[PRESet :]SURGE:NORI?	
		Set)->
[PRESet:]SU	RGE:TIME	
説明	サージ電流テストの時間の設定と読み取りをします サージ電流テストの時間である SURGE TIME:10 して読み取るためのものです。	。このコマンドは、 ~1000ms を設定
構文	[PRESet:]SURGE:TIME <nr2></nr2>	
クエリ構文	[PRESet:]SURGE:TIME?	
		Set
[PRESet:]SU	RGE:STEP	
説明	サージ電流テストの STEP 電流の設定と読み取り ンドは、サージ電流テストの減少電流設定値、n=1- 読み取るためのものです。	をします。このコマ ~5 を設定および
構文	[PRESet:]SURGE:STEP <nr2></nr2>	
クエリ構文	[PRESet:]SURGE:STEP?	
[PRESet:]SU	RGE:{ON OFF}	$\underbrace{\text{Set}}_{\text{Query}}$
説明	サージ電流テストのオン・オフの設定と読み取りをL ドは、サージ電流テストのオンまたはオフ、ON:RU OFF:STOPを設定および読み取るためのものです	、ます。このコマン N SURGE、 ^ト 。
構文	[PRESet:]SURGE:{ON OFF}	
クエリ構文	[PRESet:]SURGE:SURGE?	
[PRESet:]CP	RSP	$\underbrace{\text{Set}}_{\text{Query}}$
説明	CP モードの RESPONSE を設定と読み取りをしま は、CP モード RESPONSE の、0:高速、4:低速で す。	す。このコマンド 、初期値は0で
構文	[PRESet:]CPRSP{n}	
クエリ構文	[PRESet:]CPRSP?	
[PRESet:]AV	G	$\underbrace{\text{Set}}_{} \rightarrow \underbrace{\text{Query}}_{}$
説明	電圧値/電流値/電力値の読み取りの平均時間の設 ます。このコマンドは、電圧計/電流計/電力計の平 ¹	定と読み取りをし 勾時間を測定し、

MEAS AvG 1~64 設定で、初期値は1です。

構文	[PRESet:]AVG <nr2></nr2>
クエリ構文	[PRESet:]AVG?

5-4-2. リミットコマンド

		(Set)→
[LIMit:]CURR	ent:{HIGH LOW} or {IH IL}	
説明	このコマンドは、しきい値電流の上限/下限値を設定 です。負荷のシンク電流がこの下限値より低いか、 合、NG 表示が点灯して「NO GOOD」を示します。	きするためのもの 上限値より高い場
構文	[LIMit]:CURRent:{HIGH LOW} <nr2> {IH IL} <nr2></nr2></nr2>	
クエリ構文	[LIMit]:CURRent:{HIGH LOW}? {IH IL}?	
		(Set)
[LIMit:]POWe	r:{HIGH LOW} or {WH WL}	
説明	このコマンドは、しきい値電力(WATT)の上限/下限 めのものです。電力(WATT)がこの下限値より低い 高い場合、NG 表示が点灯して「NO GOOD」を示し	ℓ値を設定するた ヽか、上限値より ンます。
構文	[LIMit]:POWer:{HIGH LOW} <nr2> {WH WL} <nr2></nr2></nr2>	
クエリ構文	[LIMit]:POWer:{HIGH LOW}? {WH WL}?	
		(Set)
[LIMit:]VOLTage:{HIGH LOW} or {VH VL}		
説明	このコマンドは、しきい値電圧の上限/下限値を設定するためのもの です。入力電圧が下限値より低い、または上限値より高い場合、NG 表が点灯して「NO GOOD」を示します。	
構文	[LIMit]:VOLTage:{HIGH LOW} <nr2> {VH VL} <nr2></nr2></nr2>	
クエリ構文	[LIMit]:VOLTage:{HIGH LOW}? {VH VL}?	

[LIMit:]{SVH S	SVL}	$\underbrace{\text{Set}}_{\rightarrow}$
説明	このコマンドは、ショート電流の上限/下限値を設定す す。ショート電流が下限値以下または上限値以上に が点灯して「NO GOOD」を表示します。	するためのもので なると、NG 表示
構文	[LIMit:]{SVH SVL} <nr2></nr2>	
クエリ構文	[LIMit:]{SVH SVL}?	
[LIMit:]ADDC	V:VOLT	$\underbrace{\text{Set}}_{\text{Query}}$

説明	CC+CVまたはCP+CVモードの定電圧値の設定と読み取りをしま す。CC+CVモードの場合、EUTの電圧が、設定された定電圧値と等 しくなるまで負荷に定電流が流れ、その後、定電圧モードに切り替わ ります。このコマンドを使用して、定電圧設定値を読み取ります。 CP+CVモードの場合、EUTの電圧が設定された定電圧値と等しくな るまで負荷に定電力が消費され、その後、定電圧モードに切り替わり ます。このコマンドを使用して、定電圧設定値を読み取ります。
構文	[LIMit:]ADDCV:VOLT <nr2></nr2>
クエリ構文	[LIMit:]ADDCV:VOLT?

[LIMit:]ADDCV

(Set)→

説明	CC+CV または CP+CV モードでの動作開始および停止をします。 CC+CV または CP+CV モードは、その時点での定電流モードまたは 定電力モードに従って実行されます。
構文	[LIMit:]ADDCV {ON OFF}

5-4-3. ステータスコマンド

負荷のステータスの設定と読み取りをします。

	(Set)
[STATe:]LOAD	

説明	シンク電流の設定と読み取りをします。このコマンドは、シンク電流の ステータスを設定するために使用されます。ONに設定すると、負荷
	はロードオンします。OFF に設定すると、負荷はロードオフします。
構文	[STATe:]LOAD {ON OFF}

クエリ構文	[STATe:]LC	DAD?				
パラメータ	0	ON				
	1	OFF				
						(Set)
[STATe:]MOD	DE					
=	4. # a # =			≖ .(1.±.)	<u> </u>	
詋明	負荷の放電モードの設定と読み取りをします。次の表のように、負荷はこれら4つの放電モードで動作しています。放電モードを読み取る場合、 戻り値 0111213 は CCICRICVICP を意味します。					
構文	[STATe:]M	ODE {CC C	R CV	CP}		
クエリ構文	[STATe:]M	ODE?				
各シリーズのモ	モード	CC	CR	CV	CP	
ジュール	(値)	0	1	2	3	
	LSP	1	1	1	1	
						Set
[STATe:]SHO	Rt					
説明	このコマンド ON に設定し す。	は、負荷を討 っている間、1	設定して 負荷の	ジョート V+、V-Ŀ	テストを ピンは短	行うためのものです。 絡状態のようになりま
構文	[STATe:]Sł	IORt {ON	OFF}			
クエリ構文	[STATe:]Sł	HORt?				
						(Set)
(STATe:)PRE	Set					→ Query)
[0]						
説明	左または右 のコマンドは たは電力計	行の多機能; :、左側の5 を表示するた	メーター 行の LC - めのも	を利用し Dモニタ のです。	して、設況 マーを選打 。	官値を表示します。こ 択して、電流の設定ま
	Pres ON:電	流の設定を	表示す	るLCD	モニター	-を選択します。
	Pres OFF:L	_CD モニタ-	ーは「電	カ計」に	なります	0
構文	[STATe:]Pf	RESet {ON	OFF}			
クエリ構文	[STATe:]PF	RESet?				
パラメータ	0	OFF				
	1	ON				

		Set
[STATe:]SEN	Se	
説明	負荷入力電圧の内部・外部センシングの切り替えを マンドは、負荷入力電圧を、VSENSE または INPU らで読み取るかを設定します。ON に設定すると、入 VSENSE から取得され、OFF に設定すると、電圧は から取得されます。LSP シリーズでは、オプションと があります。AUTO に設定すると、電圧は VSENSE す。ただし、VSENSE から電圧が入力されていない コネクタから取得されます。	行います。このコ T コネクタのどち .カ電圧は t INPUT コネクタ して ON と AUTO E から取得されま 場合は、INPUT
構文	[STATe:]SENSe {ON OFF AUTO}	
クエリ構文	[STATe:]SENSe?	
[STATe:]LEV	el	Set → →Query
説明	負荷の LOW と HIGH の選択と読み取りをします。L 放電モード(CC/CR/CV/CP)の low レベル値です。L 放電モードの high レベル値です。	.EV LOW は、各 .EV HIGH は、各
構文	[STATe:]LEVel {HIGH LOW}	
クエリ構文	[STATe:]LEVel?	
パラメータ	0 LOW/A	
	1 HIGH/B	
		Set →
[STATe:]DYN	amic	
説明	負荷の動作が、ダイナミック(動的)であるかスタティ かの設定と読み取りをします。	ック(静的)である
	1. DYN ON、ダイナミック動作に設定	
	2. DYN OFF、スタティック動作に設定	
構文	[STATe:]DYNamic {ON OFF}	
クエリ構文	[STATe:]DYNamic?	
[STATe:]CLR		Set)->
説明	作業中に発生した LSP シリーズのエラーフラグをク コマンドは、 PROT および ERR のレジスタの内容を ものです。 実行後、これら 2 つのレジスタの内容は「	リアします。この クリアするための 0」になります。

構文	[STATe:]	CLR		
[STATe:]NG?				
説明	LSP シリーズに NG フラグが立っているかどうかを問い合わせます。 NG ステータス表示を確認するためにコマンド NG?を設定します。「0」 は、NG (NO GOOD)の LCD が消灯していることを意味します。「1」 は、NG LCD が点灯していることを意味します。			
クエリ構文	[STATe:]	NG?		
	0	GO		
	1	NG		
[STATe:]PRO	Tect?			
説明	LSP シリ- (16 進数) 「1」は OF 「8」は OC を示してし スタを「0」	ーズで保護機能が発生し)。 PP が発生したことを意味 CP を意味します。次の表 います。コマンド CLR を使 にクリアします。	たかどうかをを問い合わせます します。「4」は OVP を意味します。 は、対応する保護ステータスの数 見用すると、PROT ステータスのレジ	
クエリ構文	[STATe:]	PROTect?		
PROT ステータ スの登録	Bit 7 Bit 6 7 6	Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 5 4 3 2 1 0	Over Power Protection (OPP) Over Temperature Protection (OTP) Voltage Protection (OVP) urrent Protection (OCP)	
	ビットID	ビット値	備考	
	bit 0	0=Off, 1=Triggered	過電力保護(OPP)	
	bit 1	0=Off, 1=Triggered	過熱保護(OTP)	
	bit 2	0=Off, 1=Triggered	過電圧保護(OVP)	
	bit 3	0=Off, 1=Triggered	過電流保護(OCP)	
[STATe:]CCR			<u>Set</u> →	
説明	CC モード RANGE が に RANG	で電流レンジを切り替え が自動的に設定され、R2 EIIに設定されます。	ます。AUTO に設定すると、 2 に設定すると、RANGE が強制的	

構文	[STATe:]CCR {AUTO R2}

[STATe:]NGEABLE		(Set)→
説明	GO/NG チェック機能を有効または無効に設定しま れている場合は、負荷は NG 判定機能を実行し、C いる場合は実行しません。	す。ON に設定さ FF に設定されて
構文	[STATe:]NGEABLE {ON OFF}	
[STATe:]POL	AR	Set
[STATe:]POL 説明	AR 電圧計を設定して極性を表示します。POS は極性; を意味し、NEG は逆極性を意味します。	Set →
[STATe:]POL 説明 構文	AR 電圧計を設定して極性を表示します。POS は極性; を意味し、NEG は逆極性を意味します。 [STATe:]POLAR {POS NEG}	Set →

[STATe:]START

説明	負荷にテストを開始するように命令します。電子負荷は、TEST CONFIG(TCONFIG)で設定されたテスト項目とパラメータに従って テストを実行します。
構文	[STATe:]START

[STATe:]STOP

Set)->

(Set)

説明	負荷にテストを停止するように命令します。
構文	[STATe:]STOP{; NL}

5-4-4. システムコマンド

LSP シリーズのシステムの設定と読み取りをします。

[SYStem:]RE	Call m	(Set)→
説明	メモリに保存されていたロードのステータスを呼び ンドは、メモリに保存されているロードのステータス ものです。 m (STATE) =1~150 です。	出します。このコマ 、を呼び出すための
構文	SYStem:]RECall m	
例	RECALL 2	
	メモリの2番目に保存されていたロードステータス	を呼び出します。

[SYStem:]STORe m

(Set)→

説明	負荷のステータスをメモリに保存します。このコマンドは、ロード中の ステータスをメモリに保存するためのものです。m(STATE)=1~150 です。
構文	[SYStem:]STORe m
	STORE 2
	ロードステータスを2番目のメモリに保存します。

ISYStem:	INAIVIE ?

Set

Set

Query

クエリ構文	[SYStem:]NAME?{; NL}
	み取るためのものです。
説明	負荷の型番を読み取ります。このコマンドは、負荷のモデル番号を読

[SYStem:]REMOTE

説明	REMOTE ステータスを入力するコマンド(RS-232C/USB/LAN のみ) です。このコマンドは RS-232C/USB/LAN を制御するためのもので す。
構文	[SYStem:]REMOTE

[SYStem:]LOCAL

説明	REMOTE 状態を終了するコマンド(RS-232C/USB/LAN のみ)です。 このコマンドは RS-232C/USB/LAN の制御を終了するためのもので す。
構文	[SYStem:]LOCAL

5-4-5. 計測コマンド

負荷の実際の電流、電圧、電力の値を測定します。

MEASure:CURRent?

 説明
 負荷の電流を読み取ります。電流計の5桁の数字を読みます。単位は「A」です。

 クエリ構文
 MEASure:CURRent?

-

説明	負荷の電圧を読み取ります。電圧計の5桁の数字を読みます。単位 は「V」です。
クエリ構文	MEASure:VOLTage?

MEASure:PC	OWer?	
説明	負荷の電力を読み取ります。電力計の 5 桁の数: は「W」です。	字を読みます。単位
クエリ構文	MEASure:POWer?	

第6章. アプリケーション

この章では、基本的な動作モードと、LSP シリーズ電子負荷が使用されるいくつかの一般的なアプリケーションについて詳しく説明します。

6-1. ローカルセンス接続

概要

ローカルセンシングは、リード長が比較的短いアプリケーション、 または負荷レギュレーションが重要ではないアプリケーションで使 用されます。ローカルセンスモードで接続されている場合、LSPシ リーズ電子負荷の5桁の電圧計は、DC入力端子の電圧を測定 します。DUTと電子負荷の間の接続リード線は、インダクタンスを 最小限に抑えるために束ねるか、タイラップする必要があります。 次の図は、電子負荷をDC電源に接続した場合の一般的なセット アップを示しています。

ローカル電圧セン ス接続

6-2. リモートセンス接続

概要

例

リモートセンシングは、長いリード長を必要とするアプリケーション の電圧降下を補償します。これは、低電圧、高電流の条件下で 役立ちます。負荷のリモート電圧検出端子(Vs+)と(Vs-)は、DC ソースの(+)と(-)出力に接続されています。正しい極性に注意し てください。そうしないと、損傷が発生する可能性があります。電 源ケーブルとセンスケーブルは、インダクタンスを最小限に抑え るために、束ねるか、タイラップする必要があります。 次の図は、リモートセンス操作用に接続された電子負荷を使用し た一般的なセットアップを示しています。

V-sense が「ON」に設定され、センス端子が DUT に接続されて いる場合、負荷はすべての電圧降下をチェックして補正します。 最大電圧検出補償は、本体の定格と同じです。

LSP602-151 の Vmax は 150Vdc であるため、最大 Vsense も 150Vdc です。

LSP602-601 の Vmax は 600Vdc であるため、最大 Vsense も 600Vdc です。

LSP602-122 の Vmax は 1200Vdc であるため、最大 Vsense も 1200Vdc です。

リモート電圧センス 接続

95

6-3. 定電流モードアプリケーション

概要

定電流(CC)モードは、テスト対象の電源の負荷レギュレーショ ン、クロスレギュレーション、出力電圧、およびダイナミックレギュ レーションをテストするのに理想的です。CCモードは、セルとバッ テリーパックの放電特性とライフサイクルをテストするためにも使 用できます。CC動作では、LSPシリーズは、高電流レベルと低 電流レベルを切り替え可能なスタティック負荷として動作できま す。負荷をダイナミックに操作して、ユーザーが時間とともにシン ク電流を調整できるようにすることも可能です。

スタティックモード 主なアプリケーション分野は次のとおりです。

電圧源のテスト 電源の負荷レギュレーションテスト バッテリー放電テスト

定電流モードアプ リケーション

ダイナミックモード

内蔵のパルス発生器により、ユーザーは時間とともに変化する実 世界の負荷を再現できます。

主なアプリケーション分野は次のとおりです。

電源の負荷過渡応答試験

電力回復時間テスト

バッテリーのパルス負荷シミュレーション

パワーコンポーネントのテスト

2つの電流レベルを設定でき、2つの電流レベル間の変化率を時 間に応じて調整できます。電流上昇(スルー)レートと電流下降 (スルー)レートは、互いに独立して調整でき、以下でさらに定義さ れます。

Rise slew rate = $(Ilow - Ihigh) / Ta (A/\mu s)$

Fall slew rate = (Ihigh - Ilow) / Tb (A/ μ s)

Rise time(Ta) = (Ilow - Ihigh) / Rise slew rate

Fall time(Tb) = (Ihigh - Ilow) / Fall slew rate

波形が高い時間(Thigh)と波形が低い時間(Tlow)も調整できま す。次の図は、ダイナミック波形を定義する6つの調整可能なパ ラメータを示しています。

アナログプログラミ ング入力 アナログプログラミング入力は、CC モードでも使用できます。ア ナログプログラミング入力により、複雑な動的波形を外部発振器 に設定できます。LSP シリーズの負荷は、ダイナミック能力の範 囲内である限り、外部信号に従って追跡および負荷をかけます。 入力信号は 0~10V(dc + ac)の範囲にすることができます。10V は、負荷の全電流容量に比例します。

独立してプログラ ムされた立ち上が り/立ち下がりスル ーレートによるダイ ナミック負荷電流

6-4. 定電圧モードアプリケーション

概要 定電圧(CV)動作では、負荷は設定された電圧値に到達するた めに必要なだけの電流をシンクしようとします。CV 動作は、DC 電流源の負荷レギュレーションをチェックするのに役立ちます。 CV モードは、DC 電源の電流制限を特徴づけるのにも理想的で す。これらのアプリケーション分野については、以下でもう少し説 明します。

電流源のテスト DC 電流源の一般的な用途は、バッテリー充電器です。ほとんど のバッテリー充電器は、バッテリー電圧に応じて充電電流を自動 的に調整するように設計されています。CV モードでは、電子負荷 は目的の電圧に到達するために必要な電流をシンクします。した がって、CV モードは、特定の電圧レベルでの充電電流をチェック するのに理想的です。

バッテリー充電器を CV モードでさまざまな電圧レベルでテストすると、電流曲線を記録できます。したがって、バッテリー充電器の 負荷調整は、開発、製造、およびバッチテスト中に確認できます。

電源の電流制限の 特性評価

定電圧モードアプ リケーション 電流制限は電源に必要な機能です。フォールドバック電流制限 曲線は、固定出力スイッチング電源では非常に一般的です。定 電流制限曲線は、調整可能な実験用電源でより一般的です。 CC または CR モードで電流制限曲線を見つけることは非常に困 難または不可能ですが、CV モードを使用すると簡単になります。 ユーザーは CV 電圧を設定し、出力電流を記録します。電圧設定 に対して電流測定値をプロットすると、電源の出力電流制限曲線 が得られます。

6-5. 定抵抗モードアプリケーション

概要	定抵抗モードでの動作は、電圧源と電流源の両方をテストするの に役立ちます。CRモードは、電源の「ソフトスタート」に特に適し ています。これについては、以下で詳しく説明します。
電源の電源投入シ ーケンス	定電流モードでは、プリセット電流値の初期「ロードオン」での要 求はほぼ瞬時に発生します。これにより、最初のスイッチオン時 に比較的高い電流需要を満たすテスト対象デバイス(DUT)の問 題が発生する可能性があります。
例	5V/50A 出力電源は、0~5V の起動範囲全体で50Aを供給できな い場合があります。多くの場合、電源の短絡または過電流保護 回路により、電源がシャットダウンします。これは、電源が低すぎ る電圧レベルで 50A を供給しようとしているためです。 この問題の答えは、CC モードを使用するのではなく、代わりに CR モードを使用することです。これは、CR モードでは、標準の CC モードと比較した場合、電流と電圧が一緒に上昇して「ソフト スタート」を提供するためです。
	ただし、LSP シリーズ負荷では、調整可能な電流ランプを設定で きることに注意してください。この機能は、RISE スルーレートとし てダイナミック設定内にあります。スタティックモードでも、LSP シ リーズ電子負荷は、調整された RISE スルーレートに合わせて「ロ ードオン」での電流需要を調整します。ダイナミック設定でも FALL スルーレートを使用すると、「ロードオフ」で電流ランプダウンを制 御できます。

99

6-6. 定電力モードアプリケーション

概要

バッテリー評価

ー次電池または二次電池は、ノートブックコンピュータ、ビデオカ メラ、携帯電話など、さまざまなポータブル電子製品の電源です。 長い使用時間と顧客満足度を確保するために、バッテリーパック は可能な限り長い時間一定の電力を供給できる必要がありま す。

バッテリーの出力電圧は時間の経過とともに低下することが測定 できます(図 a)。電圧の減衰率は、デューティサイクル、化学的 性質、バッテリーの使用年数、周囲温度など、さまざまな要因に よって異なります。

したがって、デバイスに可能な限り長い時間電力を供給し続ける には、バッテリーは出力電圧に関係なく安定した電力出力を提供 できなければなりません(図 c)。一定の電力を維持するために、 出力電流は、還元電圧を補償するために時間とともに増加する 必要があります(図 b)。

LSP シリーズ電子負荷を CP モードで動作させることは、バッテリ ーの特性をテストするのに理想的です。これは、バッテリー電圧 が低下すると、CP 設定を維持するために負荷電流が自動的に 増加するためです。テストエンジニアは、時間に対してシンク値を ログに記録することで、さまざまな放電率でのバッテリーのエネル ギー容量を測定することもできます。

LSP シリーズは、調整可能なロードオフ設定も備えています。こ れにより、電圧レベルを設定して、このプリセット電圧に達すると 電子負荷が自動的に電力のシンクを停止するようになります。こ れは、バッテリーが損傷を与える深い放電にさらされないように するために使用できます。

スタティック操作に加えて、負荷はCPモードでダイナミックに操作 することもできます。ダイナミック機能により、ランプ、フォール、平 坦の時間を2レベルの電力間で調整できます。この機能は、「実 世界」の負荷をより正確にシミュレートできることを意味します。た とえば、ダイナミックモードを使用して、無線周波数端末からデー タを送信するための電力パルスを提供するために必要なバッテリ ーの性能をテストできます。

注意

CPRSP = 0(定義は 0)のときに CP モードを使用してバッテリー 放電テストを行うと、ワイヤーが長すぎると、発振が発生してテス トが停止する場合があります。以下のような解決策があります。

- Vsense 機能を使用する電圧降下補償のために Vsense を 接続する。
- CPRSP = 1~4 を使用して、CP モードの応答速度(Config キーの CPRSP 設定)を遅くします。

電源をオフするとCPRSP設定は保存されません。LSPの電源を オンしたときは、CPRSPを設定しなおす必要があります。

6-7. CC+CV モードの動作アプリケーション

概要

下図に示すように、CC+CV モードで動作する場合、LSP シリーズは定電流および定電圧負荷と同時に動作します。 定電流(CC)負荷で動作する場合、LSP シリーズ電子負荷から 電圧源(VM)への定電流負荷(I)を維持し、定電圧を維持します。

定電圧負荷で動作している場合、VM は V より大きく、入力電流 が変化し、入力電圧は固定されたままになります。

VM 電圧が設定電圧 CV 未満の場合、負荷は電流をシンクしません。

操作方法:

・負荷入力端子は DUT に接続されています

・CC モードに変更し、CC 電流設定を設定します。

・Limit キーを押して CV 電圧を設定すると、ディスプレイに 「Add.CV」と表示されます。

・START キーを押して CC+CV テストを開始し、「STOP」キーを 押して CC+CV テストを停止します。

CC+CV モードの 動作アプリケーショ ン

0.0V @UT

ししもし、のりモートコントロー	
REMOTE	(リモートコントロールの設定)
MODE CC	(電流値を読む)
CC:HIGH 20	(負荷電流を 20A に設定する)
LIM:ADDCV:VOLT 50	(定電圧値を50Vに設定する)
LIM:ADDCV ON	(CC+CV モードのテスト開始)
MEAS:CURR?	(電流値を読む)
MEAS:VOLT?	(電圧値を読む)
LIM:ADDCV OFF	(CC+CV テストを停止する)

6-8. CP+CV モードの動作アプリケーション

概要

下の図に示すように、CP+CV モードで動作し、LSP シリーズは定 電力および定電圧負荷と同時に動作します。

定電力(CP)負荷で動作する場合、LSP シリーズ電子負荷は指 定された電力を提供し、独立した定電圧源(VM)が出力電圧にな ります。

定電圧負荷オンで動作している場合、VMはVより大きく、入力電 力が変化し、入力電圧は固定されたままになります。

VM 電圧が設定電圧 CV 未満の場合、負荷は電流をシンクしません。

操作方法:

・負荷入力端子は DUT に接続されています

・CP モードに変更し、CP 電力設定を設定します。

・Limit キーを押して CV 電圧を設定すると、ディスプレイに 「Add.CV」と表示されます。

・START キーを押して CP+CV テストを開始し、「STOP」キーを 押して CP+CV テストを停止します。

CP+CVモードの動 作アプリケーション

CP+CV のリモートコントロール

(リモートコントロールの設定)
(電力値を読む)
(負荷電力を 100W に設定する)
(定電圧値を 50V に設定する)
(CP+CV モードのテスト開始)
(電力値を読む)
(電圧値を読む)
(CP+CV テストを停止する)

6-9. 定電流源としての動作

概要

LSP 大容量電子負荷は、下図に示すように、バッテリーまたは他のアプリケーションを充電するための定電圧源と直列に使用すると、定電流源として使用できます。

定電流源の接続

6-10. ゼロボルト負荷アプリケーション

概要

下の図に示すように、電子負荷は、最小動作電圧よりも高い電圧 を出力する DC 電圧源と直列に接続できます。電子負荷に接続さ れている DUT をゼロボルト状態まで動作させることができるよう に、DC 電圧源は電子負荷に必要な最小動作電圧を提供しま す。このアプリケーションは、高放電電流テストを備えた低電圧バ ッテリーセルに適しています。

注音

最小動作電圧はモデルによって異なります。 150Vのモデルの場合、最小動作電圧は 0.7Vです。 600Vのモデルの場合、最小動作電圧は 10Vです。 1200Vのモデルの場合、最小動作電圧は 15Vです。

6-11. 並列動作

概要

単一のLSP シリーズ負荷の電力および/または電流能力が十分 でない場合、負荷を並列に動作させることが可能です。 下の図に示すように、電源の正と負の出力は各負荷モジュール に個別に接続されます。設定は、個々のロードモジュールごとに 行われます。総負荷電流は、各負荷が流れる負荷電流の合計で す。

スタティックモードでは、ロードモジュールを CC、CR、または CP で動作するように設定できます。複数の負荷を使用して単一の DC 電源から電力をシンクする場合、ダイナミックモードで動作す ることは許可されていません。

注意

・電子負荷は、固定電流パターンでのみ並列動作を実行できます。

・電子負荷は直列接続では使用できません。

LSP シリーズ負荷 の並列動作

6-12. 電源の OCP テスト

- OCP のマニュアル
- 1. Limit キー機能を押して、I_Hi と I_Lo を設定します。
- コントロール

(設定例)

OCP テストを設定し、OCP キーを押して次のステップに進みます。

3. 開始負荷電流を 0A に設定し、OCP キーを押して次のステ ップに進みます。

4. 負荷電流のステップを 0.005A に設定し、OCP キーを押し て次のステップに進みます。

5. 停止負荷電流を 5A に設定し、OCP キーを押して次のステ ップに進みます。

6. OCP VTH を 6.00V に設定し、OCP キーを押して次のステ ップに進みます。

7. START/STOP テストキーを押します。

 DUTの出力電圧降下がしきい値電圧(V-th 設定)より低く、 OCPトリップポイントが I_HiとI_Loリミット間にある場合、 中央の5桁のLCDディスプレイに「PASS」と表示され、そ れ以外の場合は「FAIL」と表示されます。

OCP 0	Dリモー	トコントロー	-ル例
-------	-------------	--------	-----

	-
REMOTE	(リモート設定)
TCONFIG OCP	(OCP テストを設定)
OCP:START 0.1	(開始負荷電流を 0.1A に設定)
OCP:STEP 0.01	(ステップ負荷電流を 0.01A に設定)
OCP:STOP 2	(停止負荷電流を 2A に設定)
VTH 3.0	(OCP VTHを3.0Vに設定)
IL 0	(電流下限値を 0A に設定)
IH 2	(電流上限値を 2A に設定)
NGENABLE ON	(NG イネーブルをオンに設定)
START	(OCP テストを開始)
TESTING?	(テスト中ですか?、1:テスト中、0:テスト終了)
NG?	(合格/不合格?、0:合格、1:不合格)
OCP?	(OCP 電流値を聞く)
STOP	(OCP テストを停止)

6-13. 電源の OPP テスト

- OCP のマニュアル 1. Limit キー機能を押して、W_HiとW_Loを設定します。
- コントロール

(設定例)

OPP テストを設定し、OPP キーを押して次のステップに進みます。

3. 開始負荷電力を 0W に設定し、OPP キーを押して次のステ ップに進みます。

4. ステップ負荷電力を 0.5W に設定し、OPP キーを押して次 のステップに進みます。

5. 停止負荷電力を100Wに設定し、OPPキーを押して次のス テップに進みます。

6. OPP VTH を 6.00V に設定し、OPP キーを押して次のステ ップに進みます。

7. START/STOP テストキーを押します。

 DUTの出力電圧降下がしきい値電圧(V-th 設定)より低く、 OPPトリップポイントがW_HiとW_Loリミットの間にある場合、右5桁のLCDディスプレイに「PASS」と表示され、それ以外の場合は「FAIL」と表示されます。

-	5.000v	STATE
UP	FAIL	100,0 ×

OPP のリモートコントロール例

REMOTE	(リモート設定)
TCONFIG OPP	(OPP テストを設定)
OPP:START 3	(開始負荷電力を3Wに設定)
OPP:STEP 1	(ステップ負荷電力を 1W に設定)
OPP:STOP 5	(停止負荷電力を5Wに設定)
VTH 3.0	(OPP VTHを3.0V に設定)
WL 0	(電力下限値を 0W に設定)
WH 5	(電力上限値を 5W に設定)
NGENABLE ON	(NG イネーブルをオンに設定)
START	(OPP テストを開始)
TESTING?	(テスト中ですか?、1:テスト中、0:テスト終了)
NG?	(合格/不合格?、0:合格、1:不合格)
OPP?	(OPP 電流値を聞く)
STOP	(OPP テストを停止)

6-14. SHORT テスト

SHORT のマニュ アルコントロール 1. SHORT テストを設定し、Short キーを押して次のステップに 進みます。

 UP キーを押して Short 時間を 10000ms に設定し、Short キーを押して次のステップに進みます。

3. DOWN キーを押し、V-Hi 電圧を 1.00V に設定し、Short キ ーを押して次のステップに進みます。

CC	SHORT	STATIC RANGE LEVEL
	1/_H+	100v

4. DOWN キーを押し、V-Lo 電圧を 0V に設定し、Short キー を押して次のステップに進みます。

SHORT	STATIC MARKED BOARD
V_Lo	0.00v

5. START/STOP テストキーを押します。

SHORT	STATIC
PRESS	START

Short テスト終了時、DUT の降下電圧が V_Hiと V_Lo リミットの間にあると、右上の5桁の LCD ディスプレイには「PASS」と表示されます。

• 0.50v	STATIC
PASS	ENI

 DUT の降下電圧が V_Hi と V_Lo リミットの間にない場合、 LCD ディスプレイには「FAIL」が表示されます。

	STATIC
FAIL	ENI

SHORT のリモートコントロール例 REMOTE (リモ TCONFIG SHORT (SH STIME 1 (SH

(リモート設定)(SHORT テストを設定)(SHORT 時間を 1ms に設定)

START	(SHORT テストを開始)
TESTING?	(テスト中ですか?、1:テスト中、0:テスト終了)
STOP	(SHORT テストを停止)

6-14-1. OCP、OPP、SHORT の動作フローチャート

6-15. バッテリー放電テスト

バッテリー放電アプリケーションには、6種類のバッテリー放電があります。

6-15-1. Disch CC / Disch CP 放電容量の測定

CC または CP モードで操作します。まず、UVP(低電圧保護)の設定をします。そして LOAD ON でのテスト中、バッテリー電圧が UVP LOAD OFF 未満になった場合に、総 放電容量 AH/WH を表示します。

6-15-2. サイクルライフテスト

リモート動作のみです。リモートコマンドリストを参照してください。

サイクルライフテストは、バッテリー放電テスト使用パルスモード、ダイナミックモード使用 カウントテストおよび繰り返し機能です。次の図に示すように、負荷オンおよびダイナミッ クオンでカウンターが0になるまで、負荷オンおよびダイナミックオンで自動変更がオフ になり、「OK」、「XX.XXX」(Vメーター)がリモートで表示されます。サイクル設定範囲は 1~2000、ステップ設定値は1~3、リピート設定値は0~9999で、リモート動作による設定 です。

注意 LOAD OFF 電圧の事前設定は、事前設定された放電時間に達 していないときにバッテリーが放電するのを防ぐことができます。 バッテリー電圧が低くなるとバッテリーの損傷を防ぐためにバッテ リーを停止します。

6-15-3. RAMP モード

図 5-16 に示すように、RAMP モードは、ロードオン時のスルーレート、およびリピート機 能です。「STEPn」 n=1~9、CC0、CC1、ΔT1、CC2、ΔT2.....CC9、ΔT9、リピート、 ロードオンモード、電流値の 1 秒ごとの増減を設定します。

△CC=(CCn-(CCn-1))/Time、Time:0~6000 秒、STEP:1~9、Repeat:0~9999、ロー ドオン自動変更をオフにすると、リモートは「OK」と「XX.XXX」(Vメーター)を表示しま す。

6-15-4. REMOTE コマンドの説明

Disch CC/Disch CP:BATT:CURR または BATT:POWER の設定、BATT:UVP の設 定、停止放電時間 BATT:TIME の設定、停止放電容量 BATT:AHまたは BATT:AH の 設定、次に「BATT:TESTON」コマンド開始。バッテリー電圧が UVP 値未満の場合、テ ストの終了に代わって LOAD OFF します。終了すると、LOAD リモートは「OK、XXXXX」、 XXXXX は代表的な総放電容量:AH/WH、を表示します。

例

- Disch CC の場合 BATT: CURR 2.34 BATT: UVP 12.0 BATT: TIME 6000 BATT: AH 999 BATT: TEST ON
- Disch CP の場合 BATT: POWER 2.34 BATT: UVP 12.0 BATT: TIME 6000 BATT: WH 999 BATT: TEST ON

サイクルライフテストを設定では、設定されたシーケンスは CCLn/CCHn/THn/TLn/CYCLEn、Repeat、LDOFFV パラメータコマンド、「BATT: TEST ON」、テストを開始するコマンド、を入力します。テスト終了後、リモートは「OK、 XXXXX」を表示、XXXXX は終了電圧です。

例

第7章. 付録

7-1. LSP のデフォルト設定

次のデフォルト設定は、本器の工場出荷時の構成設定です。

モデル名	LSP602-151	LSP802-151	LSP103-151
項目	初期値		
CC L+Preset	0.000A	0.000A	0.000A
CC H+Preset	0.000A	0.000A	0.000A
CR H+Preset	15000Ω	11250Ω	9000.0Ω
CR L+Preset	15000Ω	11250Ω	9000.0Ω
CV H+Preset	150.00V	150.00V	150.00V
CV L+Preset	150.00V	150.00V	150.00V
CP L+Preset	0.00W	0.0W	W0.0
CP H+Preset	0.00W	0.0W	0.0W
モデル名	LSP123-151	LSP153-151	LSP183-151
項目	初期値		
CC L+Preset	0.000A	0.000A	0.000A
CC H+Preset	0.000A	0.000A	0.000A
CR H+Preset	7500.0Ω	6000.0Ω	5000.0Ω
CR L+Preset	7500.0Ω	6000.0Ω	5000.0Ω
CV H+Preset	150.00V	150.00V	150.00V
CV L+Preset	150.00V	150.00V	150.00V
CP L+Preset	0.00W	0.0W	0.0W
CP H+Preset	0.00W	0.0W	0.0W
モデル名	LSP203-151	LSP243-151	LSP602-601
項目	初期値		
CC L+Preset	0.000A	0.000A	0.000A
CC H+Preset	0.000A	0.000A	0.000A
CR H+Preset	4500.0Ω	4500.0Ω	85712Ω
CR L+Preset	4500.0Ω	4500.0Ω	85712Ω
CV H+Preset	150.00V	150.00V	600.00V
CV L+Preset	150.00V	150.00V	600.00V
CP L+Preset	W00.0	0.0W	W0.0
CP H+Preset	0.00W	0.0W	W0.0

モデル名	LSP802-601	LSP103-601	LSP123-601
項目	初期値		
CC L+Preset	0.000A	0.000A	0.000A
CC H+Preset	0.000A	0.000A	0.000A
CR H+Preset	64284Ω	51427Ω	42856Ω
CR L+Preset	64284Ω	51427Ω	42856Ω
CV H+Preset	600.00V	600.00V	600.00V
CV L+Preset	600.00V	600.00V	600.00V
CP L+Preset	0.00W	0.0W	0.0W
CP H+Preset	0.00W	0.0W	0.0W
モデル名	LSP153-601	LSP183-601	LSP203-601
項目	初期値		
CC L+Preset	0.000A	0.000A	0.000A
CC H+Preset	0.000A	0.000A	0.000A
CR H+Preset	34284Ω	28570Ω	25713Ω
CR L+Preset	34284Ω	28570Ω	25713Ω
CV H+Preset	600.00V	600.00V	600.00V
CV L+Preset	600.00V	600.00V	600.00V
CP L+Preset	0.00W	0.0W	0.0W
CP H+Preset	0.00W	0.0W	0.0W
モデル名	LSP243-601	LSP602-122	LSP802-122
項目	初期値		
CC L+Preset	0.000A	0.000A	0.000A
CC H+Preset	0.000A	0.000A	0.000A
CR H+Preset	21428Ω	30000Ω	22500Ω
CR L+Preset	21428Ω	30000Ω	22500Ω
CV H+Preset	600.00V	1200.0V	1000.0V
CV L+Preset	600.00V	1200.0V	1000.0V
CP L+Preset	0.00W	0.0W	0.0W
CP H+Preset	0.00W	0.0W	0.0W

モデル名	LSP103-122	LSP123-122	LSP153-122
項目	初期値		
CC L+Preset	0.000A	0.000A	0.000A
CC H+Preset	0.000A	0.000A	0.000A
CR H+Preset	18000Ω	15000Ω	12000Ω
CR L+Preset	18000Ω	15000Ω	12000Ω
CV H+Preset	1200.0V	1200.0V	1200.0V
CV L+Preset	1200.0V	1200.0V	1200.0V
CP L+Preset	W00.0	W0.0	W0.0
CP H+Preset	0.00W	0.0W	0.0W
モデル名	LSP183-122	LSP203-122	LSP243-122
項目	初期値		
CC L+Preset	0.000A	0.000A	0.000A
CC H+Preset	0.000A	0.000A	0.000A
CR H+Preset	10000Ω	9000Ω	6000Ω
CR L+Preset	10000Ω	9000Ω	6000Ω
CV H+Preset	1000.0V	1200.0V	1200.0V
CV L+Preset	1000.0V	1200.0V	1200.0V
CP L+Preset	W00.0	W0.0	W0.0
CP H+Preset	0.00W	0.0W	0.0W
モデル名	LSP602-151	LSP802-151	LSP103-151
項目	リミット初期値		
V_Hi	150.00V	150.00V	150.00V
V_Lo	0.00V	0.00V	0.00V
I_Hi	600.00A	800.00A	1000.0A
I_Lo	0.00A	0.00A	0.00A
W_Hi	6000.0W	8000.0W	10000.0W
W_Lo	0.0W	0.0W	0.0W

モデル名	LSP123-151	LSP153-151	LSP183-151
項目	リミット初期値		
V_Hi	150.00V	150.00V	150.00V
V_Lo	0.00V	0.00V	0.00V
I_Hi	1200.0A	1200.0A	1800.0A
I_Lo	0.00A	0.00A	0.00A
W_Hi	12000.0W	15000.0W	18000.0W
W_Lo	0.0W	0.0W	0.0W
モデル名	LSP203-151	LSP243-151	LSP602-601
項目	リミット初期値		
V_Hi	150.00V	150.00 V	600.00 V
V_Lo	0.00V	0.00V	0.00V
I_Hi	2000.0A	2000.0A	420.00A
I_Lo	0.00A	0.00A	0.00A
W_Hi	20000W	24000W	6000.0W
W_Lo	0.0W	0.0W	0.0W
モデル名	LSP802-601	LSP103-601	LSP123-601
項目	リミット初期値		
V_Hi	600.00V	600.00V	600.00V
V_Lo	0.00V	0.00V	0.00V
I_Hi	560.00A	700.00A	840.00A
I_Lo	0.00A	0.00A	0.00A
W_Hi	8000.0W	10000.0W	12000.0W
W_Lo	0.0W	0.0W	0.0W
モデル名	LSP153-601	LSP183-601	LSP203-601
 項目	リミット初期値		
V_Hi	600.00V	600.00V	600.00V
V_Lo	0.00V	0.00V	0.00V
I_Hi	840.00A	1260.00A	1400.00A
I_Lo	0.00A	0.00A	0.00A
W_Hi	15000.0W	18000.0W	20000W

モデル名	LSP243-601	LSP602-122	LSP802-122
項目	リミット初期値		
V_Hi	600.00V	1200.0V	1200.0V
V_Lo	0.00V	0.00V	0.00V
I_Hi	1680.00A	240.00A	320.00A
I_Lo	0.00A	0.00A	0.00A
W_Hi	24000W	6000.0W	8000.0W
W_Lo	0.0W	0.0W	0.0W
モデル名	LSP103-122	LSP123-122	LSP153-122
項目	リミット初期値		
V_Hi	1200.0V	1000.0V	1200.0V
V_Lo	0.00V	0.00V	0.00V
I_Hi	400.00A	480.00A	600.00A
I_Lo	0.00A	0.00A	0.00A
W_Hi	10000.0W	12000.0W	15000.0W
W_Lo	0.0W	0.0W	0.0 W
モデル名	LSP183-122	LSP203-122	LSP243-122
 項目	リミット初期値		
V_Hi	1200.0V	1200.0V	1200.0V
V_Lo	0.00V	0.00V	0.00V
I_Hi	720.00A	800.00A	960.00A
I_Lo	0.00A	0.00A	0.00A
W_Hi	18000.0W	20000W	24000W
W_Lo	0.0W	0.0W	0.0W
モデル名	LSP602-151	LSP802-151	LSP103-151
	DYN 初期値		
 T Hi	0.050ms	0.050ms	0.050ms
T Lo	0.050ms	0.050ms	0.050ms
RISE	0.144A/µs	0.192A/µs	0.240A/µs

モデル名	LSP123-151	LSP153-151	LSP183-151
項目	DYN 初期値		
T_Hi	0.050ms	0.050ms	0.050ms
T_Lo	0.050ms	0.050ms	0.050ms
RISE	0.288A/µs	0.360A/µs	0.432A/µs
FALL	0.288A/µs	0.360A/µs	0.432A/µs
モデル名	LSP203-151	LSP243-151	LSP602-601
項目	DYN 初期値		
T_Hi	0.050ms	0.050ms	0.050ms
T_Lo	0.050ms	0.050ms	0.050ms
RISE	0.480A/µs	0.480A/µs	0.288A/µs
FALL	0.480A/µs	0.480A/µs	0.288A/µs
モデル名	LSP802-601	LSP103-601	LSP123-601
項目	DYN 初期値		
T_Hi	0.050ms	0.050ms	0.050ms
T_Lo	0.050ms	0.050ms	0.050ms
RISE	0.288A/µs	0.336A/µs	0.384A/µs
FALL	0.288A/µs	0.336A/µs	0.384A/µs
モデル名	LSP153-601	LSP183-601	LSP203-601
項目	DYN 初期値		
T_Hi	0.050ms	0.050ms	0.050ms
T_Lo	0.050ms	0.050ms	0.050ms
RISE	0.432A/µs	0.480A/µs	0.528A/µs
FALL	0.432A/µs	0.480A/µs	0.528A/µs
モデル名	LSP243-601	LSP602-122	LSP802-122
項目	DYN 初期値		
T_Hi	0.050ms	0.050ms	0.050ms
T_Lo	0.050ms	0.050ms	0.050ms
RISE	0.576A/µs	0.192A/µs	0.192A/µs
FALL	0.576A/µs	0.192A/µs	0.192A/µs

モデル名	LSP103-122	LSP123-122	LSP153-122
項目	DYN 初期値		
T_Hi	0.050ms	0.050ms	0.050ms
T_Lo	0.050ms	0.050ms	0.050ms
RISE	0.224A/µs	0.256A/µs	0.288A/µs
FALL	0.224A/µs	0.256A/µs	0.288A/µs
モデル名	LSP183-122	LSP203-122	LSP243-122
項目	DYN 初期値		
T_Hi	0.050ms	0.050ms	0.050ms
T_Lo	0.050ms	0.050ms	0.050ms
RISE	0.320A/µs	0.352A/µs	0.384A/µs
FALL	0.320A/µs	0.352A/µs	0.384A/µs
モデル名	LSP602-151	LSP802-151	LSP103-151
項目	CONFIG 初期值		
SENSE	Auto	Auto	Auto
LD-ON	2.50V	2.50V	2.50V
LD-OFF	1.000V	1.000V	1.000V
+LOAD	+LOAD	+LOAD	+LOAD
モデル名	LSP123-151	LSP153-151	LSP183-151
項目	CONFIG 初期值		
SENSE	Auto	Auto	Auto
LD-ON	2.50V	2.50V	2.50V
LD-OFF	1.000V	1.000V	1.000V
+LOAD	+LOAD	+LOAD	+LOAD
モデル名	LSP203-151	LSP243-151	LSP602-601
項目	CONFIG 初期值		
SENSE	Auto	Auto	Auto
LD-ON	2.50V	2.50V	4.00V
LD-OFF	1.000V	1.000V	0.50V
+LOAD	+LOAD	+LOAD	+LOAD

モデル名	LSP802-601	LSP103-601	LSP123-601
項目	CONFIG 初期值		
SENSE	Auto	Auto	Auto
LD-ON	4.00V	4.00V	4.00V
LD-OFF	0.50V	0.50V	0.50V
+LOAD	+LOAD	+LOAD	+LOAD
モデル名	LSP153-601	LSP183-601	LSP203-601
項目	CONFIG 初期值		
SENSE	Auto	Auto	Auto
LD-ON	4.00V	4.00V	4.00V
LD-OFF	0.50V	0.50V	0.50V
+LOAD	+LOAD	+LOAD	+LOAD
モデル名	LSP243-601	LSP602-122	LSP802-122
項目	CONFIG 初期值		
SENSE	Auto	Auto	Auto
LD-ON	4.00V	10.00V	10.00V
LD-OFF	0.50V	5.00V	5.00V
+LOAD	+LOAD	+LOAD	+LOAD
モデル名	LSP103-122	LSP123-122	LSP153-122
項目	CONFIG 初期值		
SENSE	Auto	Auto	Auto
LD-ON	10.00V	10.00V	10.00V
LD-OFF	5.00V	5.00V	5.00V
+LOAD	+LOAD	+LOAD	+LOAD
モデル名	LSP183-122	LSP203-122	LSP243-122
項目	CONFIG 初期值		
SENSE	Auto	Auto	Auto
LD-ON	10.00V	10.00V	10.00V
LD-OFF	5.00V	5.00V	5.00V
+LOAD	+LOAD	+LOAD	+LOAD

モデル名	すべてのモデル
項目	初期値
SHORT	無効
OPP	無効
OCP	無効

7-2. LSP の寸法

7-2-1. LSP602-xxx

7-2-4. LSP203-xxx, LSP243-xxx

7-3. LSP シリーズの仕様

この仕様は、LSP の電源が 30 分以上オンになっている場合に適用されます。高周波と 高電圧のオプションは別々の仕様として表記されていることに注意してください。

7-3-1. LSP602-151, LSP802-151

モデル名	LSP602-151		LSP802-151	
電力 ^{*1}	6kW		8kW	
電流	0~60A	0~600A	0~80A	0~800A
電圧	0~150V			
最低動作電圧	0.7V @600A		0.7V @800A	
保護				
過電力保護(OPP)	105%			
過電流保護(OCP)	104%			
過電圧保護(OVP)	105%			
過熱保護(OTP)	90°C±5°C			
定電流モード				
範囲 ^{*2}	60A	600A	80A	800A
分解能	0.96mA	9.6mA	1.28mA	12.8mA
確度 ^{*3}	±0.05% of (Settin	g+Range)		
定抵抗モード				
範囲	15000Ω~	0.25Ω~	11250Ω~	0.1875Ω~
	0.25Ω	0.0012Ω	0.1875Ω	0.0009Ω
分解能	66.666µS	4.167μΩ	88.888µS	3.125μΩ
確度	±0.2% of (Setting	+Range)		
定電圧モード				
範囲	150V			
分解能	2.5mV			
確度	±0.05% of (Settin	g+Range)		
定電力モード				
範囲	600W	6000W	800W	8000W
分解能	9.6mW	96mW	12.8mW	128mW
確度	±0.1% of (Setting	+Range)		
定電圧モード + 定電	流モード			
範囲	150V	600A	150V	800A
分解能	2.5mV	9.6mA	2.5mV	12.8mA
確度	±1.0% of (Setting	+Range)		
定電圧モード + 定電	,カモード			
範囲	150V	6000W	150V	8000W
分解能	2.5mV	96mW	2.5mV	128mW
確度	±1.0% of (Setting	+Range)		
サージテスト				
サージ&ノーマル	0~600A		0~800A	
電流				
サージ時間	10~1000ms			
サージステップ	1~5			

MPPT モード				
アルゴリズム	P&O			
負荷モード	CV			
P&O インターバル	1000ms~60000m	ns、分解能は 1000r	ns	
ダイナミックモード				
タイミング				
Thigh & Tlow	0.010~9.999/99.9	99/999.9/9999ms		
分解能	0.001/0.01/0.1/1r	ns		
確度	1µs/10µs/100µs/	1ms+50ppm		
スルーレート	0.0144~	0.144~9A/µs	0.0192~	0.192~12A/µs
公報台	0.9A/µS 0.0036A/us	0.0364/us	1.2A/µs 0.0048A/us	0.0484/us
刀件形 星小立ちとがい時間	66 Zus(typical)	0.030A/µS	0.0040A/µS	0.040A/µS
取小立りエルり时间	$\pm (5\% \text{ of Setting})$	±10us		
· 唯戊 雪法		τισμο		
电 <u>机</u> 新田	0~60A	60~600A	0~80A	80~800A
^{毛四} 分解能	0.96mA	9.6mA	1 28mA	12 8mA
計測	0.0011/1	0.011/1	1.2011/1	12.011/1
雷圧のリードバック				
電圧(デジタル5桁)	0~15V	15~150V	0~15V	15~150V
分解能	0.25mV	2.5mV	0.25mV	2.5mV
確度	±0.025% of (Rea/	ding+Range)		
電流のリードバック	,	8 8,		
範囲(デジタル5桁)	0~60A	60~600A	0~80A	80~800A
分解能	0.96mA	9.6mA	1.28mA	12.8mA
確度	±0.05% of (Read	ing+Range)		
電力のリードバック				
範囲(デジタル 5 桁)	6000W		8000W	
確度*4	±0.06% of (Read	ing+Range)		
一般				
標準的な短絡抵抗	0.0012Ω		0.0009Ω	
最大短絡電流	600A		800A	
ロードオン電圧	0.25~62.5V			
ロードオフ電圧	0~62.5V	4.007		
定格人力	100Vac~240Vac	±10%		
人力周波致	50/60Hz ±3Hz		0001/4	
消費電力	510VA		920VA	
			571 Cases v 404 m	
寸法(H×W×D) 寸法(L, W/ D)	445.6mm x 481m	1m x 757.3mm	571.6mm x 481m	1m x 757.3mm
可法(HXWXD) (ニックマウントナット	445.0mm x 445.2	2000 x 757.3000	57 1.0mm X 445.2	2000 x 757.3000
(フツクマワントキツト た除く)				
であく) 十注(ロンMシロ)	341 6mm x 445 0	0mm x 757 3mm	467 6mm x 445 1	0mm v 757 3mm
うん(IIXVXD) (ラックマウントキット	5+1.00000 × 443.2		-07.0mm X 440.2	
シンシン シントキント				
これ パインク で (のへ) 香島	62ka		77.5kg	
ーニー 温度 ^{*5}	0~40°C			
······	J .J J			

7-3-2. LSP103-	151, LSP123-'	151			
モデル名	LSP103-151		LSP123-151		
電力 ^{*1}	10kW		12kW		
電流	0~100A	0~1000A	0~120A	0~1200A	
電圧	0~150V				
最低動作雷圧	0.7V @1000A		0.7V @1200A		
保護					
深度 過雪力促難(OPP)	105%				
	104%				
迥电加休设(OUF) 温電広促进(OVP)	10470				
迥电仁休遗(UVP)					
適熟保護(UIP)	90°C±5°C				
定電流モート	1001	40004	4004	40004	
範囲	100A	1000A	120A	1200A	
分解能	1.6mA	16mA	1.92mA	19.2mA	
確度*3	±0.05% of (Setting	g+Range)			
定抵抗モード					
範囲	9000Ω~	0.15Ω~	7500Ω~	0.125Ω~	
	0.15Ω	0.0007Ω	0.125Ω	0.0006Ω	
分解能	111.111µS	2.5μΩ	133.333µS	2.084μΩ	
確度	±0.2% of (Setting-	+Range)			
定電圧モード					
範囲	150V				
分解能	2.5mV				
確度	±0.05% of (Setting	g+Range)			
定電力モード					
範囲	1000W	10000W	1200W	12000W	
分解能	16mW	160mW	19.2mW	192mW	
確度	±0.1% of (Setting	+Range)			
定電圧モード + 定電	流モード	0 /			
節囲	150V	1000A	150V	1200A	
分解能	2.5mV	3 2mA	2.5mV	19.2mA	
次 庄	+1 0% of (Setting	+Range)	2.0117	10.2117	
	1.070 01 (Octaing	(Trange)			
	150\/	10000\\/	150\/	12000\\/	
単し)出 ノン Aの Aと	150V 2.Em\/	10000W	150V 2.5m\/	12000W	
·刀 件能 來安	2.011V		2.500	19211100	
唯度	±1.0% of (Setting	+Range)			
	0.40004		0.40004		
サージ&ノーマル	0~1000A		0~1200A		
電流					
サージ時間	10~1000ms				
サージステップ	1~5				
MPPT モード					
アルゴリズム	P&O				
負荷モード	CV				
P&O インターバル	1000ms~60000ms、分解能は 1000ms				
ダイナミックモード					
タイミング					
Thigh & Tlow	0.010~9.999/99.9	9/999.9/9999ms			
分解能	0.001/0.01/0.1/1ms				

I

	確度	1µs/10µs/100µs/1ms+50ppm					
	スルーレート	0.024A~ 1.5A/us	0.24A~15A/µs	0.0288A~ 1.8A/us	0.288A~ 18A/us		
	分解能	0.006A/µs	0.06A/µs	0.0072A/µs	0.072A/µs		
	最小立ち上がり時間	66.7µs(typical)	·	•	•		
	確度	±(5% of Setting) ±	⊧10µs				
	電流	(0,					
	範囲	0~100A	100~1000A	0~120A	120~1200A		
	分解能	1.6mA	16mA	1.92mA	19.2mA		
I	計測						
Ĩ	電圧のリードバック						
	範囲(デジタル 5 桁)	0~15V	15~150V	0~15V	15~150V		
	分解能	0.25mV	2.5mV	0.25mV	2.5mV		
	確度	±0.025% of (Read	ding+Range)				
	電流のリードバック						
	範囲(デジタル 5 桁)	0~100A	100~1000A	0~120A	120~1200A		
	分解能	1.6mA	16mA	1.92mA	19.2mA		
	確度	±0.05% of (Readi	ng+Range)				
	電力のリードバック						
	範囲(デジタル 5 桁)	✓5 桁) 10000W		12000W			
	確度 ^{*4}	±0.06% of (Readi	ng+Range)				
	一般						
	標準的な短絡抵抗	抵抗 0.0007Ω		0.0006Ω			
	最大短絡電流	1000A		1200A			
	ロードオン電圧	0.25~62.5V					
	ロードオフ電圧	0~62.5V					
	定格入力	100Vac~240Vac ±10%					
	入力周波数	50/60Hz ±3Hz					
	消費電力	920VA					
	入力保護	ブレーカ					
	寸法(H×W×D)	571.6mm x 481m	m x 757.3mm				
	寸法(H×W×D)	571.6mm x 445.2					
	(ラックマウントキット						
	を除く)						
	寸法(H×W×D)	467.6mm x 445.2	mm x 757.3mm				
	(ラックマウントキット						
	とキャスターを除く)	04.01.2		001			
	里重	84.8Kg		9∠кg			
		0-40°C					

7-3-3. LSP153-151, LSP183-151

モデル名	LSP153-151	-	LSP183-151			
電力 ^{*1}	15kW		18kW			
電流	0~150A	0~1500A	0~180A	0~1800A		
電圧	0~150V					
最低動作電圧	0.7V @1500A		0.7V @1800A			
保護						
過電力保護(OPP)	105%					
過電流保護(OCP)	104%					
過電圧保護(OVP)	105%					
過熱保護(OTP)	90°C±5°C					
定電流モード						
範囲 ^{*2}	150A	1500A	180A	1800A		
分解能	2.4mA	24mA	2.88mA	28.8mA		
確度 ^{*3}	±0.05% of (Settin	g+Range)				
定抵抗モード						
範囲	6000Ω~0.1Ω	0.1Ω~0.0005Ω	5000Ω~	0.0833Ω~		
11 47 114	400.000.0	4 007 0	0.0833Ω	0.0004Ω		
分解能	166.666µS	1.667μΩ	200µS	1.389μΩ		
確度	±0.2% of (Setting	+Range)				
定電圧モート	450)/					
範囲	150V					
分解能	2.5mV	D)				
催度	±0.05% of (Settin	g+Range)				
定電力モート	450011/	4500014	4000\\/	40000\\/		
 朝 一 朝	150000	1500000	180000	1800000		
分解能	24mvv	240mvv	28.8MW	288mW		
唯度	$\pm 0.1\%$ or (Setting	+Range)				
正電圧モート + 正電		15004	150\/	10004		
••□/┘ 八 & → +:	150V	1500A	1500	1600A		
プ件能	2.011V	Z4IIIA	2.500	20.011A		
唯皮 ウェード・ウェ		+rtalige)				
	ノリモート 150V	15000\//	150\/	18000\\/		
型型	2.5m\/	240mW	2.5m\/	288m\//		
刀 件能 	+1.0% of (Setting	+Range)	2.51110	2001111		
ルモノラ サージテスト		(Trange)				
サージ&ノーマル	0~1500A		0~1800A			
雪流	0 1000/1		0 1000/1			
も サージ時間	10~1000ms					
サージステップ	1~5					
MPPT T -F						
アルゴリズム	P&O					
負荷モード	CV					
P&O インターバル	1000ms~60000ms、分解能は 1000ms					
ダイナミックモード	「イナミックモード					
タイミング						
Thigh & Tlow	0.010~9.999/99.99/999.9/9999ms					
	分解能	0.001/0.01/0.1/1m	าร			
---	-----------------	--------------------------------------	---------------------	---------------------	-------------------	--
	確度	1µs/10µs/100µs/1	lms+50ppm			
	スルーレート	0.036A∼ 2.25A/µs	0.360A∼ 22.5A/µs	0.0432A~ 2.7A/µs	0.432A~ 27A/µs	
	分解能	0.009A/µs	0.09A/µs	0.0108A/µs	0.108A/µs	
	最小立ち上がり時間	66.7µs(typical)				
	確度	±(5% of Setting) ±	⊧10µs			
	電流					
	範囲	0~150A	150~1500A	0~180A	180~1800A	
	分解能	2.4mA	24mA	2.88mA	28.8mA	
I	計測					
1	電圧のリードバック					
	- 範囲(デジタル5桁)	0~15V	15~150V	0~15V	15~150V	
	分解能	0.25mV	2.5mV	0.25mV	2.5mV	
	確度	±0.025% of (Read	ding+Range)			
	電流のリードバック	, ,	0 0 /			
	範囲(デジタル5桁)	0~150A	150~1500A	0~180A	180~1800A	
	分解能	2.4mA	24mA	2.88mA	28.8mA	
	確度	±0.05% of (Reading+Range)				
	電力のリードバック					
	範囲(デジタル5桁)	15000W		18000W		
	確度*4	±0.06% of (Reading+Range)				
I	一般					
1	標準的な短絡抵抗	0.0005Ω		0.0004Ω		
	最大短絡電流	1500A		1800A		
	ロードオン電圧	0.25~62.5V				
	ロードオフ電圧	0~62.5V				
	定格入力	100Vac~240Vac	±10%			
	入力周波数	50/60Hz ±3Hz				
	消費電力	1320VA				
	入力保護	ブレーカ				
	寸法(H×W×D)	760.6mm x 481mr	m x 757.3mm			
	寸法(H×W×D)	去(H×W×D) 760.6mm x 445.2mm x 757.3mm				
	(ラックマウントキット					
	を除く)					
	寸法(H×W×D)	656.6mm x 445.2r	mm x 757.3mm			
	(ラックマウントキット					
	とキャスターを除く)					
	重量	116.5kg		124kg		
	温度*5	0~40°C				

1-3-4. L3F203-131, L3F243-131					
	モデル名	LSP203-151		LSP243-151	
	電力 ^{*1}	20kW		24kW	
	雷流	0~200A	0~2000A	0~200A	0~2000A
	重広	0.150\/			
	电压	0~1000			
÷	取低 期作電圧	0.7V @2000A			
	保護				
	過電力保護(OPP)	105%			
	過電流保護(OCP)	104%			
	過電圧保護(OVP)	105%			
	過熱保護(OTP)	90°C±5°C			
I	定雷流モード				
1	充电 ^{*2}	2004	20004	2004	20004
	^{半じ四} 八	200A	2000A	200A	2000A
	万 件 肥	3.2IIIA	JZIIIA	3.2IIIA	JZIIIA
	催度 ³	±0.05% of (Setting	g+Range)		
	定抵抗モード				
	範囲	4500Ω~0.075Ω	0.075Ω~	4500Ω~0.075Ω	0.075Ω~
			0.0004Ω		0.0004Ω
	分解能	222.22µS	1.25μΩ	222.22µS	1.25μΩ
	確度	±0.2% of (Setting-	+Range)		
	定電圧モード				
	範囲	150V			
	分解能	2.5mV			
	確度	±0.05% of (Setting	a+Range)		
Ì	定電力モード		5 - 5-7		
1	2011 日本田 111111111111111111111111111111111	2000\//	20000\//	2400\//	24000\\/
	甲U [21] 八 4 初 4 比	2000W	20000W	29.4m\//	294m\//
	·刀·胜 灰 安	JZIIIVV	Den re)	30.4000	3041117
÷	唯皮	±0.1% of (Setting-	+Range)		
		流モート			
	範囲	150V	2000A	150V	2000A
	分解能	2.5mV	32mA	2.5mV	32mA
	確度	±1.0% of (Setting-	+Range)		
	定電圧モード + 定電	カモード			
	範囲	150V	20000W	150V	24000W
	分解能	2.5mV	320mW	2.5mV	384mW
	確度	±1.0% of (Setting-	+Range)		
I	サージテスト		0 /		
1	サージ&ノーマル	0~2000A			
		0-20004			
	电机	10, 1000ma			
	サーン時间	10~1000ms			
サーンステップ 1~5					
	MPPT モード				
	アルゴリズム	P&O			
	負荷モード	CV			
	P&O インターバル	1000ms~60000m	s、分解能は 1000m	IS	
	ダイナミックモード				
1	タイミング				
	Thigh & Tlow	0.010~9,999/99.9	9/999.9/9999ms		
	分解能	0.001/0.01/0.1/1m	IS		

A E A A E A . 00040

確度	1µs/10µs/100µs/			
スルーレート	0.048A~3A/µs	0.48A~30A/µs	0.048A~3A/µs	0.48A~30A/µs
分解能	0.012A/µs	0.12A/µs	0.012A/µs	0.12A/µs
最小立ち上がり時間	66.7µs(typical)			
確度	±(5% of Setting) :	±10µs		
電流	()	•		
範囲	0~200A	200~2000A	0~200A	200~2000A
分解能	3.2mA	32mA	3.2mA	32mA
計測				
電圧のリードバック				
範囲(デジタル5桁)	0~15V	15~150V	0~15V	15~150V
分解能	0.25mV	2.5mV	0.25mV	2.5mV
確度	±0.025% of (Rea	ding+Range)		
雷流のリードバック	,	0 0 /		
範囲(デジタル5桁)	0~200A	200~2000A	0~200A	200~2000A
分解能	3.2mA	32mA	3.2mA	32mA
確度	±0.05% of (Read	ing+Range)		
電力のリードバック		3 - 3-7		
範囲(デジタル5桁)	20000W		24000W	
· · · · · · · · · · · · · · · · · · ·	±0.06% of (Read	ing+Range)		
一般	, ,	0 0 /		
標準的な短絡抵抗	0.0004Ω			
最大短絡電流	2000A			
ロードオン電圧	0.25~62.5V			
ロードオフ電圧	0~62.5V			
定格入力	100Vac~240Vac	±10%		
入力周波数	50/60Hz ±3Hz			
消費電力	1700VA			
入力保護	ブレーカ			
寸法(HxWxD)	886.6mm x 481m	m x 757.3mm		
寸法(HxWxD)				
(ラックマウントキット	886.6mm x 445.2	mm x 757.3m		
を除く)				
寸法(H×W×D)				
(ラックマウントキット	782.6mm x 445.2	mm x 757.3mm		
とキャスターを除く)				
重量	140.5kg		155kg	
 温度 ^{*5}	0~40°C		J.	

	7-3-5. LSP602-0	601, LSP802-0	501			
	モデル名	LSP602-601		LSP802-601		
	電力 ^{*1}	6kW		8kW		
	電流	0~42A	0~420A	0~56A	0~560A	
	雷圧	0~600V				
	最低動作電圧	10V @420A		10V @560A		
ì	保護	101 0 12011				
ľ	小皮 過雪力保護(OPP)	105%				
		10370				
	週电加休疫(OUF) 冯雷広促羅(OV/D)	105%				
ì	週款休護(UIF) 空電法エード	90 C±3 C				
ł	上电流て ^一 ト	42.4	420.4	EGA	5604	
	••□」 ⁻	42A	420A	0.806mA	300A	
	分 件能 物点 ³³	0.672mA	6.72mA	0.896mA	8.96MA	
ì	唯度。	±0.05% of (Setting	g+Range)			
ļ	定抵抗モート	057400	4 400500	0.400.40	4 07440	
	範囲	85/12Q~	1.428530~	64284Ω~ 1 07140	1.0714Ω~	
	八	1.4200012	0.0230412	1.07 1402	17 9900	
	万 件能 体 安	11.0009µ3	23.04µ12	15.5559µ5	17.00µ12	
ì	唯皮 ウホワテ ド	±0.2% of (Setting-	+Range)			
ļ	正電圧モート 笠田	600)/				
	軋 八 47 45	600V				
	分解能					
ì	唯度 ウェード	±0.05% of (Setting	g+Range)			
ļ	定電力セート	00014/	000011/	00014/	000014/	
	 	600VV	6000VV	80000	8000W	
	分解能	9.6mvv	96mvv	12.8mvv	128mvv	
	確度	±0.2% 0f (Setting+Range)	±0.1% 0f (Setting+Range)	±0.2% of (Setting+Range)	±0.1% of (Setting+Range)	
Ì	定雷圧モード + 定雷	(Octang) (Cange)	(Octaing (Nange)	(Octaing (Trange)	(Octaing Prange)	
Ì	元 宅 二 二 二 二 元 宅 節 囲	600V	420A	600V	560A	
	分解能	10mV	6.72mA	10mV	8.96mA	
	<u> </u>	+1 0% of (Setting	+Range)		010011111	
Ì	11/2 定雷圧モード + 定雷	カモード	(intelligo)			
Ì		600V	6000W	600V	8000W	
	分解能	10mV	96mW	10m\/	128mW	
	<u> </u>	+1 0% of (Setting	+Range)		1201111	
ì	1年反 サージニフト	±1.0 % OF (Setting	Fixalige)			
ł	サージョン	0 4204		0.5604		
		0~4207		0~300A		
	电机	10 1000ma				
	リーン時间	10~10001115 1 E				
ì	サーシステッノ	1~5				
		Dº O				
	アルコリスム タサエード	FaU CV				
į	P&U インターハル	1000ms~60000ms、分解能は 1000ms				
	ツイナミックセート タイニン ゲ					
	ジイミング	0.010.0.000/00.0	0/000 0/0000			
Thigh & Tlow 0.010~9.999/99.99/999.9/9999ms						

	分解能	0.001/0.01/0.1/1ms				
	確度	1µs/10µs/100µs/1	lms +50ppm			
	スルーレート	0.0288A~	0.288A~	0.0288A~	0.288A~	
		1.8A/µs	18A/µs	1.8A/µs	18A/µs	
	分解能	0.0072A/µs	0.072A/µs	0.0072A/µs	0.072A/µs	
	最小立ち上がり時間	66.7µs(typical)				
	確度	±(5% of Setting) =	⊧10µs			
	電流					
	範囲	0~42A	42~420A	0~56A	56~560A	
	分解能	0.672mA	6.72mA	0.896mA	8.96mA	
1	計測					
Î	電圧のリードバック					
	- 範囲(デジタル5桁)	0~60V	60~600V	0~60V	60~600V	
	分解能	1mV	10mV	1mV	10mV	
	確度	±0.025% of (Read	dina+Ranae)			
	雷流のリードバック		5 . 5.			
	範囲(デジタル5桁)	0~42A	42~420A	0~56A	56~560A	
	分解能	0.672mA	6.72mA	0.896mA	8.96mA	
	確度	+0.05% of (Readi	ng+Range)	010001111	010011#1	
	電力のリードバック					
	範囲(デジタル5桁)	6000W		8000W		
	電告() シバレO(II)/ 確度 ^{*4}	+0.06% of (Reading+Range)				
Ì	一般	2010070 01 (11044				
j	標準的な短絡抵抗	0 02390		0 01790		
	最大短終雷流	420A		560A		
	ロードオン雷圧	0.4~100V				
	ロードオフ雷圧	0~100V				
	定格入力	100Vac~230Vac	+10%			
	入力周波数	50/60Hz +3Hz	,			
	消費雷力	510VA		920\/A		
	入力保護	ブレーカ		020171		
	大法(HxWxD)	445 6mm x 481mi	m x 757 3mm	571 6mm x 481m	m x 757 3mm	
	寸法(HxWxD)	445 6mm x 445 2	mm x 757 3mm	571 6mm x 445 2	mm x 757 3mm	
	(ラックマウントキット	440.0mm x 440.2		07 1.0mm x 440.2		
	()))、))」())					
	こうべい サキ(HvWvD)	341 6mm x 445 2	mm v 757 3mm	467 6mm x 445 2	mm x 757 3mm	
	(ラックマウントキット	0+1.0mm x ++0.2i				
	レキャスターを除く)					
	ていい クランド・ション 香島	62ka		77.5kg		
	王王 但 庙 *5			77.0Kg		
	/皿/又					

	7-3-6. LSP103-	601, LSP123-0	601		
	モデル名	LSP103-601		LSP123-601	
	電力 ^{*1}	10kW		12kW	
	電流	0~70A	0~700A	0~84A	0~840A
	電圧	0~600V			
		10V @700A		10V @840A	
I	保護				
Î	過電力保護(OPP)	105%			
	過電流保護(OCP)	104%			
	過電圧保護(OVP)	105%			
	過熱保護(OTP)	90°C+5°C			
Ì	定雷流モード	00 010 0			
ľ	2 年間加し 1 ⁻	704	7004	844	8404
	心般能	1 12mA	11.2mA	1 3//mA	13 //mA
	ノ 所 flと 攻 由*3	+0.05% of (Setting	a+Pange)	1.54411A	13.44117
ì	唯反 ウザゼエード	±0.05 % 01 (Setting	g+rtalige)		
ł	た 払 れ て 一 ト	51407 20-	0.957120-	129560-	0.7142670-
	申じ」 二	0.857120	0.0571202~	4205002~	0.71420712~
	分解能	19 444905	14 30400	23 333905	11 9200
	<u> </u>	+0.2% of (Setting	+Range)	20.0000000	11102011
ì	中皮 ウェード		i i tuligoj		
ľ	お田	600\/			
	公留的	10mV			
	万 府祀 	+0.05% of (Setting	a+Bande)		
ì	唯皮		gritalige)		
ł	2年1月1日日 1日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	1000\//	10000\\/	1200\\/	12000\//
	^{単じ(四)} (二)	16m\//	160m\//	1200W	102m\//
	刀件肥	+0.2% of	+0.1% of	+0.2% of	+0.1% of
	11年1支	(Setting+Range)	(Setting+Range)	(Setting+Range)	(Setting+Range)
	定電圧モード + 定電	流モード			
Î	範囲	600V	700A	600V	840A
	分解能	10mV	11.2mA	10mV	13.44mA
	確度	±1.0% of (Setting	+Range)		
I	定電圧モード + 定電	カモード	0 /		
Î	範囲	600V	10000W	600V	12000W
	分解能	10mV	160mW	10mV	192mW
	確度	±1.0% of (Setting	+Range)	-	-
Ì	サージテスト				
Ì	サージ&ノーマル	0~700A		0~840A	
	雷流	• • • • • • •			
	モニジ 時間	10~1000ms			
	ッ システップ サージステップ	1~5			
ì					
ľ	アルゴリズム	P&O			
	うからうスム 自荷モード	CV			
	東南に I ^C P&O インターバル	1000ms~60000m	。 分解能け 1000m	ne	
ì	ダイナミックエード	1000113~0000011			
1	タイミングレート				
	Thigh & Tlow	0 010~0 000/00 0	0/000 0/0000mc		

	分解能	0.001/0.01/0.1/1ms			
	確度	1µs/10µs/100µs/1	lms +50ppm		
	スルーレート	0.0336A~ 2.1A/us	0.336A~ 21A/us	0.0384A~ 2.4A/us	0.384A~ 24A/us
	分解能	0.0084A/us	0.084A/us	0.0096A/us	0.096A/us
	確度	±(5% of Setting) ±	⊧10µs		•
	電流	(0,	•		
	範囲	0~70A	70~700A	0~84A	84~840A
	分解能	1.12mA	11.2mA	1.334mA	13.34mA
l	計測				
Î	電圧のリードバック				
	範囲(デジタル5桁)	0~60V	60~600V	0~60V	60~600V
	分解能	1mV	10mV	1mV	10mV
	確度	±0.025% of (Read	dina+Ranae)		
	電流のリードバック	,	0 0 /		
	範囲(デジタル5桁)	0~70A	70~700A	0~84A	84~840A
	分解能	1.12mA	11.2mA	1.334mA	13.34mA
	確度	±0.05% of (Readi	ng+Range)		
	電力のリードバック	,	0 0 /		
	範囲(デジタル 5 桁)	10000W		12000W	
	確度*4	±0.06% of (Reading+Range)			
	一般				
	標準的な短絡抵抗	0.0143Ω		0.00120Ω	
	最大短絡電流	700A		840A	
	ロードオン電圧	0.4~100V			
	ロードオフ電圧	0~100V			
	定格入力	100Vac~240Vac	±10%		
	入力周波数	50/60Hz ±3Hz			
	消費電力	920VA			
	入力保護	ブレーカ			
	寸法(H×W×D)	571.6mm x 481mr	m x 757.3mm		
	寸法(H×W×D)	571.6mm x 445.2r	mm x 757.3mm		
	(ラックマウントキット				
	を除く)				
	寸法(H×W×D)	467.6mm x 445.2r	mm x 757.3mm		
	(ラックマウントキット				
	とキャスターを除く)				
	7 8			001	
	重量	84.8kg		92kg	

001, LSF 103-0			
LSP153-601		LSP183-601	
15kW		18kW	
0~105A	0~1050A	0~126A	0~1260A
0~600V			
10V @1050A		10V @1260A	
105%			
104%			
105%			
90 C±3 C			
1054	10504	1264	12604
100A	1030A	120A	1200A
1.0011A		2.010MA	20. 16mA
±0.05% of (Setting	g+Range)		
0.400.4.0	0.574.440	00570 070	0.4704700
34284.8~	0.571413~	285/0.6/0~	0.4761780~
0.57141302	0.00953612	0.47617802	0.00794702
29.10/4µ5	9.536µ12	35.0009µ5	7.947µΩ
±0.2% of (Setting-	+Range)		
0001			
600V			
10mV			
±0.05% of (Setting	g+Range)		
1500W	15000W	1800W	18000W
24mW	240mW	28.8mW	288mW
±0.2% of	±0.1% of	±0.2% of	±0.1% of
(Setting+Range)	(Setting+Range)	(Setting+Range)	(Setting+Range)
	40504	COO)/	40004
600V	1050A	600V	1260A
10mv	16.8MA	10mv	20.16MA
±1.0% of (Setting-	+Range)		
カモード			
600V	15000W	600V	18000W
10mV	240mW	10mV	288mW
±1.0% of (Setting-	+Range)		
0~1050A		0~1260A	
10~1000ms			
1~5			
P&O			
CV			
1000ms~60000m	s、分解能は 1000m	าร	
		-	
0.010~9.999/99 9	9/999.9/9999ms		
	OUT, LSP Toset LSP153-601 15kW 0~105A 0~600V 10V @1050A 105% 104% 105% 90°C±5°C 105A 1.68mA ±0.05% of (Setting 34284.8~ 0.571413Ω 29.1674µS ±0.2% of (Setting 600V 10mV ±0.05% of (Setting 600V 10mV ±0.2% of (Setting 500W 24mW ±0.2% of (Setting 500V 10mV ±1.0% of (Setting $j = -k$ 600V 10mV ±1.0% of (Setting 0~1050A 10~1000ms 1~5 P&O CV 1000ms~60000m	LSP153-601 15kW 0-105A 0-600V 10V@1050A 105% 104% 105% 90°C±5°C 105A 105A 105A 105A 105A 105A 105A 105A 105A 105A 1050A 16.8mA ±0.05% of (Setting+Range) 34284.8- 0.5714130 0.0095360 29.1674µS 9.536µ0 ±0.2% of (Setting+Range) 600V 10mV ±0.05% of (Setting+Range) 1500W 24mW 240mW ±0.2% of ±0.1% of (Setting+Range) 500V 10mV ±0.2% of ±0.1% of (Setting+Range) 500V 10mV ±0.05% of (Setting+Range) 500V 10mV 240mW ±1.0% of (Setting+Range) 500V 10mV 1050A 10mV 15000W 1050A 10mV 1050A 10mV 1050A 10mV 1050A 10mV 1050A 10mV 10mV 240mW ±1.0% of (Setting+Range) 500V 10mV 10mV 10mV 1000ms 1-5 P&O CV 1000ms-60000ms, 分解能は 1000m	LSP153-601 LSP183-601 15kW 18kW 0-105A 0-1050A 0-126A 0-600V 10V @ 1260A 10V @ 1260A 105% 104% 105% 104% 105% 10V @ 1260A 105% 104% 105% 105% 105% 10V @ 1260A 105% 105% 126A 105% 1050A 126A 1.68mA 16.8mA 2.016mA 20.05% of (Setting+Range) 35.0009µS 600V 0.009536Ω 0.476178Ω 29.1674µS 9.536µΩ 35.0009µS 20.2% of (Setting+Range) 35.0009µS 100W 15000W 1800W 240mW 240mW 28.8mW 20.2% of (Setting+Range) ±0.2% of (Setting+Range) 5 5 $jt=-k'$ 600V 100V <

-3-7. LSP153-601, LSP183-601

	分解能	0.001/0.01/0.1/1ms			
	確度	1µs/10µs/100µs/′	1ms +50ppm		
	スルーレート	0.0432A~ 2.7A/us	0.432A~ 27A/us	0.048A~3A/µs	0.48A~30A/µs
	分解能	0.0108A/µs	0.108A/µs	0.012A/µs	0.12A/µs
	確度	±(5% of Setting) :	±10µs		
	電流				
	範囲	0~105A	105~1050A	0~126A	126~1260A
	分解能	1.68mA	16.8mA	2.016mA	20.16mA
	計測				
	電圧のリードバック				
	範囲(デジタル5桁)	0~60V	60~600V	0~60V	60~600V
	分解能	1mV	10mV	1mV	10mV
	確度	±0.025% of (Rea	ding+Range)		
	電流のリードバック				
	範囲(デジタル 5 桁)	0~105A	105~1050A	0~126A	126~1260A
	分解能	1.68mA	16.8mA	2.016mA	20.16mA
	確度	±0.05% of (Read	ing+Range)		
	電力のリードバック				
	範囲(デジタル5桁)	15000W		18000W	
1	確度"4	±0.06% of (Read	ing+Range)		
ļ	一般				
	標準的な短絡抵抗	0.0096Ω		0.0080Ω	
	最大短絡電流	1050A		1260A	
	ロードオン電圧	0.4~100V			
	ロードオフ電圧	0~100V	400/		
	定格人刀		±10%		
	人刀周波敛	50/60HZ ±3HZ			
	月賀電刀 1 十 /	1320VA			
	人力休護				
	う法(HXWXD) 士法(LkMkkD)	760.6mm x 46111	mm v 757 .3mm		
		760.6mm x 445.2	mm x / 57.3mm		
	(リックマリントイット				
	ですく) ナキ(HvWvD)	656 6mm x 115 2	mm v 757 3mm		
	(ラックマウントキット	030.0mm x 443.2			
	シキャスターを除く)				
	ていいた とばい	116.5kg		124ka	
	<u>キ</u> 温度 ^{*5}	0~40°C			
	·				

1-3-0. L3F203-	001, LSF243-0			
モデル名	LSP203-601		LSP243-601	
電力 ^{*1}	20kW		24kW	
電流	0~140A	0~1400A	0~168A	0~1680A
電圧	0~600V			
	10V @1400A		10V @1680A	
保護				
過電力保護(OPP)	105%			
過電流保護(OCP)	104%			
過電圧保護(OVP)	105%			
過電圧体度(OTP)	90°C+5°C			
定電流モード	30 010 0			
	1404	14004	1684	16804
^{単山} 四 公 級 社	2 24m	22 4m	2 699m A	76 88mA
刀 胜 把	2.2411A	ZZ.4IIIA	2.000IIIA	20.00mA
唯皮。		g+rtalige)		
正抵抗士一▷	05740.00	0.400500	04.400	0.0574000
• 巴田	25713.00~	0.4285602~	21428~	0.35713302~
公砚台	38 8800119	7 15200	16 6670uS	5 9600
力件化	±0.2% of (Sotting	P_{2}	40.007.9µ0	0.90µ12
唯皮	±0.2% of (Setting-	+Range)		
正竜止七一ト	600)/			
軋 八 47 44	600V			
分解能				
確度 ウモナス ド	±0.05% of (Setting	g+Range)		
定電力モート			0.00010	0.400.014
範囲	2000W	20000W	2400W	24000W
分解能	32mW	320mW	38.4mW	384mW
確度	±0.2% of	±0.1% of	±0.2% of	±0.1% of
完雷圧モード + 完雷	(Setting+Kange) 流モード	(Setting+Range)	(Setting+rtange)	(Setting+Range)
2000 日 20000 日 20000 日 20000 日 20000 日 20000 日 20000 日 2000000 日 20000 日 20000	600\/	14004	600\/	16804
心闷的	10m\/	22 4mΔ	10m\/	26.88mA
力件化	+1 0% of (Setting		IOIIIV	20.00117
唯反 中雨にエニビ - 中雨	+エ_ド	Fixalige)		
		200001//	6001/	24000\\/
単い四	10m\/	20000W	10m\/	294m\//
刀件能	1011V	Denge)	TOTITY	3041110
唯皮	±1.0% of (Setting-	+Range)		
	0 44004		0.40004	
サーン & ノーマル	0~1400A		0~1680A	
電流				
サージ時間	10~1000ms			
サージステップ	1~5			
MPPT モード	5			
アルゴリズム	P&O			
負荷モード	CV			
P&O インターバル	1000ms~60000m	s、分解能は 1000m	าร	
ダイナミックモード				
タイミング				
Thiah & Tlow	0.010~9.999/99.9	9/999.9/9999ms		

分解能	0.001/0.01/0.1/1ms			
確度	1µs/10µs/100µs/	1ms +50ppm		
スルーレート	0.0528A~	0.528A~	0.0576A~	0.576A~
	3.3A/µs	33A/µs	3.6A/µs	36A/µs
分解能	0.0132A/µs	0.132A/µs	0.0144A/µs	0.144A/µs
確度	±(5% of Setting)	±10µs		
電流				
範囲	0~140A	140~1400A	0~168A	168~1680A
分解能	2.24mA	22.4mA	2.688mA	26.88mA
計測				
電圧のリードバック				
範囲(デジタル 5 桁)	0~60V	60~600V	0~60V	60~600V
分解能	1mV	10mV	1mV	10mV
確度	±0.025% of (Rea	iding+Range)		
電流のリードバック				
範囲(デジタル 5 桁)	0~140A	140~1400A	0~168A	168~1680A
分解能	2.24mA	22.4mA	2.688mA	26.88mA
確度	±0.05% of (Read	ling+Range)		
電力のリードバック				
範囲(デジタル 5 桁)	20000W		24000W	
確度 ^{*4}	±0.06% of (Read	ling+Range)		
一般				
標準的な短絡抵抗	0.0072Ω		0.0060Ω	
最大短絡電流	1400A		1680A	
ロードオン電圧	0.4~100V			
ロードオフ電圧	0~100V			
定格入力	100Vac~240Vac	±10%		
入力周波数	50/60Hz ±3Hz			
消費電力	1700VA			
入力保護	ブレーカ			
寸法(HxWxD)	886.6mm x 481m	im x 757.3mm		
寸法(HxWxD)	886.6mm x 445.2	2mm x 757.3m		
(ラックマウントキット				
を除く)				
寸法(HxWxD)	782.6mm x 445.2	2mm x 757.3mm		
(ラックマウントキット				
とキャスターを除く)				
重量	140.5kg		155kg	
2P 由 15	0 40°C			

1-3-9. L3P0U2-				
モデル名	LSP602-122		LSP802-122	
電力 ^{*1}	6kW		8kW	
雷流	0~24A	0~240A	0~32A	0~320A
電圧	0~1200\/		• •	
电压	15\/ @240A		151/ @2204	
取低剿作龟止 □=#	15V @240A		15V @320A	
保護				
過電力保護(OPP)	105%			
過電流保護(OCP)	104%			
過電圧保護(OVP)	105%			
過熱保護(OTP)	90°C±5°C			
定雷流モード				
新用 ^{*2}	24A	240A	32A	320A
心砚能	0.384mA	2 8/mA	0.512mA	5 12mA
刀胖 肥 李毐 ^{*3}	0.004111A		0.012111A	J.1211A
唯度。	±0.05% of (Settin	g+Range)		
定抵抗モート				
範囲	30kΩ~5Ω	5Ω~0.0625Ω	22.5kΩ~3.75Ω	3.75Ω~
11 27 11				0.04690
分解能	3.333µS	83.334μΩ	4.444µS	62.5μΩ
確度	±0.2% of (Setting	+Range)		
定電圧モード				
範囲	1200V			
分解能	20mV			
確度	±0.05% of (Settin	g+Range)		
定電力モード				
節囲	600W	6000W	800W	8000W
分解能	9.6mW	96mW	12.8mW	128mW
7 所能	+0.1% of (Setting	+Pange)	12.01111	1201111
	立.170 of (octaing あエービ	(Trange)		
		0404	4000\/	2204
範囲	12000	240A	12000	320A
分解能	20mv	3.84mA	20mv	5.12mA
確度	±1.0% of (Setting	+Range)		
定電圧モード + 定電	『カモード			
範囲	1200V	6000W	1200V	8000W
分解能	20mV	96mW	20mV	128mW
確度	±1.0% of (Setting	+Range)		
サージテスト				
サージ & ノーマル	0~240A		0~320A	
雷流				
モージ時間	10~1000ms			
ッ シスコー サージステップ	1~5			
	1.0			
	PRO.			
	CV/			
P&U インターバル	1000ms~60000m	IS、分解能は1000r	ns	
タイナミックモード				
タイミング				
Thigh & Tlow	0.010~9.999/99.9	9/999.9/9999ms		
分解能 0.001/0.01/0.1/1ms				

400

.

1 00000 400

146

確度	1µs/10µs/100µs/	1ms +50ppm		
スルーレート	0.0192~	0.192~12A/µs	0.0192~	0.192~12A/µs
八条745	1.2A/µs	0.0494/up	1.2A/µs	0.0484/06
万 件形 攻在	$0.0046A/\mu s$ +(5% of Sotting)	0.046A/µS	0.0046A/µS	0.046A/µS
唯 反 一 本 	±(378 of Setting)	±τομο		
电 <u>机</u> 新田	0.244	24 2404	0.324	22 2201
心的	0~24A 0 384m∆	24~240A 3.84mA	0~32A 0.512m∆	$52 \sim 320 \text{A}$ 5 12m \text{A}
計測	0.0041174	5.0+mA	0.012111A	5.12mA
雷圧のリードバック				
範囲(デジタル5桁)	0~120V	120~1200V	0~120V	120~1200V
分解能	2mV	20mV	2mV	20mV
確度	±0.025% of (Rea	ding+Range)		
電流のリードバック	,	0 0,		
範囲(デジタル5桁)	0~24A	24~240A	0~32A	32~320A
分解能	0.384mA	3.84mA	0.512mA	5.12mA
確度	±0.05% of (Read	ling+Range)		
電力のリードバック				
範囲(デジタル5桁)	6000W		8000W	
確度 ^{*4}	±0.06% of (Read	ling+Range)		
一般				
標準的な短絡抵抗	0.0625Ω		0.0469Ω	
最大短絡電流	240A		320A	
ロードオン電圧	1~250V			
ロードオフ電圧	0~250V	100/		
定格人力	100Vac~240Vac	±10%		
人刀周波敛	50/60HZ ±3HZ		000) (A	
月賀電刀 1 カロ港	510VA 		920VA	
入力休設 ナ注(リンM/シD)	ノレーバ 145 6mm x 491m	m v 757 9mm	571 6mm v 491r	nm v 757 2mm
小法(HXWXD) ナ法(HyWyD)	445.0000 x 445.0	0 mm x 757 2mm	571.0000 x 4450	2mm v 757.3mm
う (」(IXWXD) (ラックマウントキット	44J.00000 X 44J.2		571.0mm x 445.	211111 & 7.57.511111
(ワワフマ フンドマ フト				
寸法(HxWxD)	341.6mm x 445.2	2mm x 757.3mm	467.6mm x 445	2mm x 757.3mm
(ラックマウントキット	5 TT.01111 X 440.2		101.00000 × 440.	
とキャスターを除く)				
重量	62kg		77.5kg	
 温度 ^{*5}	0~40°℃		C C	

7-3-10. LSP10	3-122, LSP123	6-122		
モデル名	LSP103-122		LSP123-122	
電力 ^{*1}	10kW		12kW	
電流	0~40A	0~400A	0~48A	0~480A
雷圧	0~1200V			
^吧 ————————————————————————————————————	15V @400A		15V @480A	
保護				
▲電力促難(OPD)	105%			
	104%			
週電加休護(OUF) 溫電広促羅(OVP)	105%			
迥电广休设(UVF)	105 /0 00°0 · 5°0			
週熟休護(UIP)	90 C±5 C			
	10.1	4004	10.1	100.1
 即 <i> 田</i> ⁻ 	40A	400A	48A	480A
分解能	0.64mA	6.4mA	0.768mA	7.68mA
確度。	±0.05% of (Settin	g+Range)		
定抵抗モード				
範囲	18kΩ~3Ω	3Ω~0.0375Ω	15kΩ~2.5Ω	2.5Ω~0.0313Ω
分解能	5.5555µS	50μΩ	6.6666µS	41.667μΩ
確度	±0.2% of (Setting	+Range)		
定電圧モード				
範囲	1200V			
分解能	20mV			
確度	±0.05% of (Settin	g+Range)		
定電カモード				
範囲	1000W	10000W	1200W	12000W
分解能	16mW	160mW	19.2mW	192mW
確度	±0.1% of (Setting	+Range)		
定電圧モード + 定電	「流モード」			
範囲	1200V	400A	1200V	480A
分解能	20mV	6 4mA	20mV	7 68mA
確度	±1.0% of (Setting	+Range)	_0	
	ョード コード	(i talige)		
新田	1200\/	10000\//	1200\/	12000\//
公留作	20m\/	160m\\/	20m\/	102m\//
次 / File	+1 0% of (Setting	+Range)	20111	1521110
1年12		i i taligoj		
サージョノーフル	0~4004		0~4804	
リーン & ノーマル 電法	0~400A		0~400A	
电沉	10, 1000ma			
サーン时间	10~1000ms			
サーシステッノ	1~5			
	540			
アルコリスム	P&U			
貝荷モート	CV			
P&O インターバル	1000ms~60000m	is、分解能は 1000r	ns	
ダイナミックモード				
タイミング				
Thigh & Tlow	0.010~9.999/99.9	99/999.9/9999ms		
分解能	0.001/0.01/0.1/1n	ns		
確度	1µs/10µs/100µs/	1ms +50ppm		

スルーレート	0.0224~ 1.4A/us	0.224~14A/µs	0.0256~ 1.6A/us	0.256~16A/µs
分解能	0.0056A/us	0.056A/us	0.0064A/us	0.064A/us
確度	±(5% of Setting)	±10us		
雷流	(
範囲	0~40A	40~400A	0~48A	48~480A
分解能	0.64mA	6.4mA	0.768mA	7.68mA
計測	010 1110 1	0	011 001101	
雷圧のリードバック				
範囲(デジタル5桁)	0~120V	120~1200V	0~120V	120~1200V
分解能	2mV	20mV	2mV	20mV
確度	±0.025% of (Rea	dina+Ranae)		
雷流のリードバック		5 5 5 7		
範囲(デジタル5桁)	0~40A	40~400A	0~48A	48~480A
分解能	0.64mA	6.4mA	0.768mA	7.68mA
確度	±0.05% of (Read	lina+Ranae)		
電力のリードバック	· · · · · · · · · · · · · · · · · · ·	3 - 3-7		
範囲(デジタル5桁)	10000W		12000W	
· · · · · · · · · · · · · · · · · · ·	±0.06% of (Read	lina+Ranae)		
一般	, ,	0 0 /		
標準的な短絡抵抗	0.0375Ω		0.00313Ω	
最大短絡電流	400A		480A	
ロードオン電圧	1~250V			
ロードオフ電圧	0~250V			
定格入力	100Vac~240Vac	±10%		
入力周波数	50/60Hz ±3Hz			
消費電力	920VA			
入力保護	ブレーカ			
寸法(HxWxD)	571.6mm x 481m	ım x 757.3mm		
寸法(HxWxD)	571.6mm x 445.2	2mm x 757.3mm		
(ラックマウントキット				
を除く)				
寸法(HxWxD)	467.6mm x 445.2	2mm x 757.3mm		
(ラックマウントキット				
とキャスターを除く)				
重量	84.8kg		92kg	
	0		-	

7-3-11. LSP153	3-122, LSP183	5-122		
モデル名	LSP153-122		LSP183-122	
電力 ^{*1}	15kW		18kW	
電流	0~60A	0~600A	0~72A	0~720A
雷圧	0~1200\/		-	
电压	15\/ @6004		15\/ @7204	
取14311F电圧 2月##	13V @000A		13V @120A	
	4050/			
過電刀保護(OPP)	105%			
過電流保護(OCP)	104%			
過電圧保護(OVP)	105%			
過熱保護(OTP)	90°C±5°C			
定電流モード				
範囲 ^{*2}	60A	600A	72A	720A
分解能	0.96mA	9.6mA	1.152mA	11.52mA
確度 ^{*3}	±0.05% of (Settin	g+Range)		
定抵抗モード		/		
節囲	12kΩ~2Ω	2Ω~0.0250Ω	10KΩ~1.666Ω	1.666Ω~
тош				0.0209Ω
分解能	8.3333µS	33.334µΩ	10µS	27.77μΩ
確度	±0.2% of (Setting	+Range)	·	
定事日ナード	- ··· (-··· 3	5.7		
新田	1200\/			
公邸能	20m\/			
力所能	+0.05% of (Settin	a+Banae)		
唯皮 ウ雷カエード	±0.0070 01 (Octain	gritange)		
と 电 リモート	1500\\/	15000\//	1900\//	19000\//
●	130000	1500000		1000000
分 件能 西安			20.01111	2001111
催皮 ホテロー バー カテ	±0.1% of (Setting	+Range)		
	『流モート			
範囲	1200V	600A	1200V	720A
分解能	20mV	9.6mA	20mV	3.2mA
確度	±1.0% of (Setting	+Range)		
定電圧モード + 定電	『カモード			
範囲	1200V	15000W	1200V	18000W
分解能	20mV	240mW	20mV	288mW
確度	±1.0% of (Setting	+Range)		
サージテスト				
サージ & ノーマル	0~600A		0~720A	
雷流				
モルジロ	10~1000ms			
ッ シスコー サージステップ	1~5			
	1.0			
マルゴリブノ	PRO.			
テルコリヘム 各共テード				
貝何七一ト				
P&U インターバル	1000ms~60000m	IS、分解能は1000r	ns	
タイナミックモード				
タイミング				
Thigh & Tlow 分解能	0.010~9.999/99.9 0.001/0.01/0.1/1n	99/999.9/9999ms ns		

確度	1µs/10µs/100µs/	1ms +50ppm		
スルーレート	0.0288~ 1.8A/µs	0.288~18A/µs	0.032~2A/µs	0.32~20A/µs
分解能	0.0072A/µs	0.072A/µs	0.008A/µs	0.08A/µs
確度	±(5% of Setting)	±10µs		
電流				
範囲	0~60A	60~600A	0~72A	72~720A
分解能	0.96mA	9.6mA	1.152mA	11.52mA
計測				
電圧のリードバック				
範囲(デジタル5桁)	0~120V	120~1200V	0~120V	120~1200V
分解能	2mV	20mV	2mV	20mV
確度	±0.025% of (Rea	ding+Range)		
電流のリードバック				
範囲(テジタル5桁)	0~60A	60~600A	0~72A	72~720A
分解能	0.96mA	9.6mA	1.152mA	11.52mA
唯皮 あたい じぶっち	±0.05% 01 (Read	ing+Range)		
電力のリートハック	15000\//		18000\//	
11 11 11 11 11 11 11 11 11 11	+0.06% of (Read	ing+Range)	1000000	
一船		ing+itange)		
極進的な短級抵抗	0.02500		0.02090	
最大短終雷流	600A		720A	
取べる記憶が	1~250V			
ロードオフ雷圧	0~250V			
定格入力	100Vac~240Vac	±10%		
入力周波数	50/60Hz ±3Hz			
消費電力	1320VA			
入力保護	ブレーカ			
寸法(HxWxD)	760.6mm x 481m	m x 757.3mm		
寸法(HxWxD)	760.6mm x 445.2	mm x 757.3mm		
(ラックマウントキット				
を除く)				
寸法(HxWxD)	656.6mm x 445.2	mm x 757.3mm		
(ラックマウントキット				
とキャスターを除く)				
重量	116.5kg		124kg	
温度 ^{*5}	0~40°C			

7-3-12. LSP203	3-122, LSP243	6-122		
モデル名	LSP203-601		LSP243-601	
電力 ^{*1}	20kW		24kW	
電流	0~80A	0~800A	0~96A	0~960A
雷圧	0~1200V			
电 <u>不</u> 最低動作雷圧	15V @800A		15V @960A	
取 因 动 F 电 上				
▲雪力促難(ODD)	105%			
	10.0 %			
迥电儿休设(OUF) 温電広保護(OVP)	104/0			
迥电江休设(UVP)	103%			
週熟休護(UIP)	90 C±5 C			
	004	0004		0000
••••□ [▲]	80A	800A	96A	960A
分解能	1.28mA	12.8mA	1.536mA	15.36MA
催度。	±0.05% of (Settin	g+Range)		
定抵抗セート				4.050
軋 田	9kΩ~1.5Ω	1.5Ω~0.0187Ω	7.5kΩ~1.25Ω	1.250~
乙級台	11 11100	25.0	12 222110	20 92400
刀件能	11.111µ3		13.333µ3	20.034µΩ
唯皮	±0.2% of (Setting	+Range)		
正竜止モート	1200\/			
●	1200V			
分解能	2011V			
唯度 ウェード	±0.05% 01 (Settin	g+Range)		
定電 フモート	0000144	20000\\/	2400\\/	0400014/
 	200000	2000000	240077	2400000
分解能	32mvv	320mvv	38.4000	384mvv
唯度 ウモマー ド・ウモ	$\pm 0.1\%$ or (Setting	+Range)		
		0001	40001/	0004
範囲	1200V	800A	1200V	960A
分解能	20mV	3.84mA	20mV	15.36mA
催皮 ホテロー・バー・ウェ	±1.0% of (Setting	+Range)		
定電圧モート + 定電	ゴモート	0000014	40001/	0.400.014/
範囲	12000	2000000	1200V	24000W
分解能	20mV	320mVV	20mV	384mW
確度	±1.0% of (Setting	+Range)		
サージテスト				
サージ&ノーマル	0~800A		0~960A	
電流				
サージ時間	10~1000ms			
サージステップ	1~5			
MPPT モード				
アルゴリズム	P&O			
負荷モード	CV			
P&O インターバル	1000ms~60000m	is、分解能は 1000r	ns	
ダイナミックモード				
タイミング				
Thigh & Tlow	0.010~9.999/99.9	9/999.9/9999ms		
分解能	0.001/0.01/0.1/1r	ns		

確度	1µs/10µs/100µs/	1ms +50ppm		
スルーレート	0.0352~ 2.2A/µs	0.352~22A/µs	0.0384~ 2.4A/µs	0.384~24A/µs
分解能	0.0088A/µs	0.088A/µs	0.0096A/µs	0.096A/µs
確度	±(5% of Setting)	±10µs		
電流				
範囲	0~80A	80~800A	0~96A	96~960A
分解能	1.28mA	12.8mA	1.536mA	15.36mA
計測				
電圧のリードバック				
範囲(デジタル5桁)	0~120V	120~1200V	0~120V	120~1200V
分解能	2mV	20mV	2mV	20mV
確度	±0.025% of (Rea	ding+Range)		
電流のリードバック				
範囲(デジタル5桁)	0~80A	80~800A	0~96A	96~960A
分解能	1.28mA	12.8mA	1.536mA	15.36mA
催度	±0.05% of (Read	ing+Range)		
電力のリートハック	0000011/		04000144	
範囲(アジタル5桁)	20000VV		2400000	
唯 度 ⁻	±0.06% of (Read	ing+Range)		
	0.01990		0.01570	
信华的な短給抵抗 見士に変更法	0.010012		0.015712	
取入短裕電流	000A		900A	
ロードオノ电圧	1~250V 0250V			
ロードオノ電圧	100\/ac~240\/ac	+10%		
入力固波数	50/60Hz +3Hz	10/0		
消費電力	1700\/A			
入力保護	ブレーカ			
大法(HxWxD)	886 6mm x 481m	m x 757 3mm		
寸法(HxWxD)	886.6mm x 445.2	mm x 757.3m		
(ラックマウントキット				
を除く)				
寸法(HxWxD)	782.6mm x 445.2	mm x 757.3mm		
(ラックマウントキット	-			
とキャスターを除く)				
重量	140.5kg		155kg	
温度*5	0~40°C		-	

*1. 周囲温度= 25℃での電力定格仕様。

²² 範囲は、CCモードでのみ自動的にまたは強制的に Range II になります。

- ^{*3.} 動作電流が 0.1%の範囲を下回る場合、精度仕様は 0.1%F.S。
- ^{*4.} Power F.S. = Vrange F.S. × Irange F.S.
- ^{*5.} 動作温度範囲は0~40℃です。特に記載のない限り、すべての仕様は25℃±5℃に適用され ます。

7-3-13.	共通仕様
---------	------

一般	
環境	屋内、高度 2000m 未満、過電圧カテゴリ(設置カテゴリ)Ⅱ
EMC	EN61326-1 (Class A) 2014/30/EU 準拠
LVD	EN61010-1 (Class 1,汚染度2) 2014/35/EU 準拠
インタフェース	
アナログ I/O	電流モニター出力、電圧モニター出力、アナログ制御入力、SYNC 入力
RS-232C	TIA/EIA-232D ,DCE type ,D-sub9 メス,RTS-CTS Flow
GP-IB	IEEE488-1979
USB	USB2.0 Full speed ,Prolific PL2303 type
LAN	100Base-TX ,IEEE802.3u ,Auto-MDI ,DHCP ,IPv4 ,Socket/HTTP

7-4. USB の設定

概要

本器の USB は Prolific PL2303 の USB 変換チップを利 用しています。パネルでの設定は特にありません。

1. 本器にUSB インタフェースを装着しPCに接続してから電 源をオンします。WindowsPC では USB 機器が接続され ると既知のデバイスであれば USB ドライバが自動適用さ れ利用可能となり、COM ポートに表示されます。 利用可能にならない場合はデバイスマネージャのほかの デバイスに利用不可のデバイスとして表示されます。 利用不可の場合は弊社ホームページからダウンロードし た USB ドライバをインストールするか、ドライバの更新で ファイルを指定します。

インストーラーを実行した場合はメッセージにそって Next および Finish をクリックします。インストールが完了すると COM ポートにデバイスが追加されます。

インストール画面例

デバイスマネージャで、追加された COM ポートを選択、 2. 右クリックしてプロパティを開きます。ポートの設定のタブ を開きボーレートを115200bps、フロー制御をハードウェ アに設定します。通信ソフト等を利用する場合は同様に、 ボーレートを115200bps、フロー制御をハードウエアに設 定してください。

以上で本器を USB で制御する準備が完了します。

View devices by type C View devices by connection	Bits per second: 115200
🗉 💻 Display adapters	
Floppy disk controllers	Data bits: 8
Hard disk controllers	
H-WG Keyboard	Parity: None
Moritors	
Network adapters	Stop bits: 1
- Ports (COM & LPT)	
Communications Port (COM1)	Elow control: Hardware
💯 Communications Port (COM2)	
- J Printer Port (LPT1)	
USB to Serial Port (COM3)	Advanced Hestore Default
Sound, video and game controllers	
System devices	
WE REPORT FOR THE STREAM PROVIDENT OF THE DEPARTMENT OF THE STREAM PROVIDENT OF THE	
Controllar Serial Bus controllers	
Universal Serial Bus controllers	
A DEFENSION OF A DESCRIPTION OF A DESCRIPT	

7-5. LAN の設定

概要	本器の LAN インタフェースは RS-232C 変換チップを利用 しています。
	ネットワーク設定はパネルからはできません。設定は機
	キシブン シ設定は、キャルがらは CC & E708 設定は版 哭が指定されている IP アドレフを利用して W/ob ブラウザ
	おか相足されている IF ノドレスを利用して Web ノノノリ
	からけいます。IPプトレスかわからない場合は
	WindowsPC用LAN 検索ツールを利用しますので弊社不
	ームページからダウンロードしてください。
	1. 本器に LAN インタフェースを装着し、LAN ケーブルでネッ
	トワークに接続後、電源をオンします。
	2. 同一ネットワークにつながっている Windows PC で LAN 検
	索アプリケーション(IPScanner*.exe)を起動します。
	初回実行時はセキュリティ認証が表示されるので許可を
	してください。
	Windows セキュリティの重要な警告
	このプログラムの機能のいくつかが Windows ファイアウォールでブロックされてい ます
	すべてのパブリック、プライベート、ドメイン ネットワークで、Windows ファイアウォールにより IPScanner の機能のいくつか
	パリロックスNUCLWase。 名前(N): IPScanner
	≫ 発行元(E): 不明 パス(H): C:¥downloads¥ipscanner-20160626 exe
	IPScanner にこれらのネットワーク上での通信を許可する: マドメイン ネットワーク (計内ネットワークなど)(D)
	■ ブライベートネットワーク(ホームネットワークや社内ネットワークなどXB)
	1だリックネットワーク(空港、喫茶店など)(非推奨)(U) にのようなネットワークは多くの場合、セキュリティが低いのセキュリティが設定されていません)
	クログラムにファイアウォールの経由を許可することの危険性の詳細
	アクセスを許可する(A) キャンセル

3. アプリケーション画面が表示されたら VIEW メニューから Refresh をクリックします。

View	Config				
	Device L.	IP Address	Subnet Mask	MAC Address	
•	5	172.22.22.222	255.255.0.0	00 01 3D 81 79 13	
*					

サブネットマスクを超えた範囲まで検索を行い結果が表示されます。

LAN ボード上の子基板に貼ってある MAC アドレスを確認 し機器の IP アドレスを特定してください。検索範囲内に複 数表示される場合は LAN ケーブルの抜差しでも機器を特 定できます。

Config メニューから IP Address をクリックすると IP アドレスとサブネットマスクを直接指定することができます。
 この設定はサブネットマスクで指定されるセグメントを超えた場合も変更が可能ですが、本体の DHCP 設定がEnable の場合は変更できません

🖳 Form2	
IP	
172.22.22.222	ок
Subnet	
255.255.0.0	Cancel

5. 確認した IP アドレスとサブネットマスクと同一セグメントの ネットワーク設定を持つ PC を用意し、Web ブラウザで本 器にアクセスします。

Control	Controller Status	
System time elapsed	00:08:37	
Firmware version	Dec 26 2007 01:04	
Serial number	xxxxx-xxxxxxx	
Setu Password	Setup Login Password	
6. すべてのステップが実行 ットアップデバイスは次	されるように修正された)図のように表示されます	

Controller Setup				
P address	172.22.4.153			
Subnet mask	255.255.0.0)		
Gateway address	172.22.4.254			
Network link speed	Auto 🗸			
DHCP client	Disable 🗸			
Socket port of HTTP setup	80 🗸			
Socket port of serial I/O	4001	TCP Serv	er 🗸	
Socket port of digital I/O	5001	Disabled	~	
Destination IP address / socket port TCP client and UDP)	0.0.0.0		0	
Connection	Auto 🐱			
TCP socket inactive timeout (minutes)	0			
Serial I/O settings (baud rate, parity, data bits, stop bits)	115200 🗸	N 🗸 8 🗸	1 🛩	
interface of serial I/O	RS 232			~
Packet mode of serial input	Disable 🗸			
Device ID	5			
Report device ID when connected	Disable 🗸			
Setup password				

 7. DHCP を Disable にして、IP アドレス、サブネットマスク、 ゲートウエイを指定後に Update をクリックして設定を完了 します。
 テスト用の接続では DHCP を Enable として IP アドレス、 サブネットマスク、ゲートウエイを自動取得してもかまいま せん。
 以下の項目は内容が理解できない場合は変更しないでく ださい。

Network link speed:Auto

Socket port of HTTP setup: 80

Socket port of serial I/O: 4001、TCP サーバー

Socket port of digital I/O: 5001、TCP サーバー

Destination IP address / socket port (TCP client and UDP) Connection: Auto

TCP socket inactive timeout(minutes):0 切断無し

Serial I/O settings (baud rate, parity, data, bits, stop bits): 115200, N, 8, 1

Interface of serial I/O: RS-232C (RTS/CTS)

Packet mode of serial input: Disable

Device ID: 5

Report device ID when connected: Disable

Setup password: 空白

7-6. オートシーケンス機能

LSP シリーズのオートシーケンス機能は、EDIT、ENTER、EXIT、TEST、および STORE の 5 個のキー操作を提供

Edit モード 1. モード、範囲、電流レベル…負荷設定、ロードオンを設定しま す。

- STORE キーを押して、負荷設定をメモリ STATE に保存します。
- 3. シーケンスロード設定について、1~2を繰り返します。
- LSP シリーズのフロントパネルのキーの Shift+SEQ を押します。
- 5. 上/下キーを押して Edit モードを選択します。
- 6. 1~9の数字キープログラム番号を押します。
- 7. STATE 上下キーを押して、メモリ状態を選択します。
- 8. ENTER を押して次のステップに進みます。
- 9. 6~8を繰り返して、シーケンスのステップを編集します。
- 10. SAVE を押して、ステップを確認します。
- LCD に、繰り返し回数の設定に対する「rept」が表示されます。
- 12. 上/下キーを押して、シーケンスループの繰り返し回数を設定 します。
- 13. ENTER を押して、シーケンスの編集を確認します。
- Test モード 1. LSP シリーズのフロントパネルのキーの Shift+SEQ を押しま す。
 - 2. 上/下キーを押して Test モードを選択します。
 - 3. 1~9の番号を押して、シーケンス番号を選択します。
 - 4. ENTER を押して、シーケンスを実行します。
 - テスト後、LCD に「PASS」または「FAIL」と表示されます。

7-6-1. オートシーケンス

オートシーケンスの設定コマンド	注	応答
FILE{SP}{n}{; NL}	n=1~9	1~9
STEP{SP}{n}{; NL}	n=1~16	1~16
TOTSTEP{SP}{n}{; NL}	Total step n=1~16	1~16
SB{SP}{m}{; NL}	m=1~150	
	m:STATE	

TIME{SP} <nr2>{; NL}</nr2>	100~9999(ms)	100~9999(ms)
SAVE{; NL}	「File n」データのセーブ	
REPEAT{SP}{n}{; NL}	n=0~9999	0~9999
RUN{SP}{F}{n}{; NL}	n=1~9	自動応答 「PASS」または 「FAIL:XX」 (XX=NG ステップ)

シーケンス例

この例では、次の図に基づいてプログラムを作成します。 プログラムは、ステップ1から8を2回繰り返します。シーケンス を2回繰り返した後、ロードがオフになり、シーケンスが終了しま

す。

シーケンス番号	ステップ番号	電流値	実行時間(T1+T2)
3	1	1A	200ms
3	2	5A	200ms
3	3	1A	400ms
3	4	5A	400ms
3	5	1A	200ms
3	6	10A	200ms
3	7	1A	200ms
3	8	0A	200ms

シーケンス例 1. 負荷電流レベルを設定し、状態 1~8 に保存します。

動作モードを設定します
 モードキーを押して CC モードにします。

- 範囲を設定します。
 RANGE キーを押して、RANGE II にします。
- 4. ロードオンを押します。
- 5. 電流値をステップ 1~8 に設定し、メモリ状態 1~8 に保存しま

す。

- 6. LSP シリーズ本体の EDIT キーを押します。
- 7. 7.上/下キーを押して Edit モードを選択します。
- 8. シーケンス番号3を押して、シーケンスを編集します。
- 9. 上/下キーを押してメモリ状態1にします。
- 10. ENTER キーを押して、シーケンスメモリを確認します。
- 11. 上/下キーを押して実行時間を設定します。
- 12. ENTER キーを押して、シーケンスステップを確認します。
- 13. 8~12を繰り返して、設定手順 1~8を実行します。
- 14. SAVE キーを押して、手順 1~8 を確認します。
- 15. 上下キーを1に押して、1回繰り返します。
- 16. ENTER を押して、繰り返し回数を確認します。

株式会社テクシオ・テクノロジー

〒222-0033 神奈川県横浜市港北区新横浜 2-18-13 藤和不動産新横浜ビル https://www.texio.co.jp/

アフターサービスに関しては下記サービスセンターへ サービスセンター 〒222-0033 神奈川県横浜市港北区新横浜 2-18-13 藤和不動産新横浜ビル TEL.045-620-2786